I do have a keras CNN model ready which expects [None,20,20,3] arrays as input. (20 is image size here...) On the other side I do have a CSV with 1200 (20*20*3) columns ready in my cloud storage.
I want to write an ETL pipeline with tensorflow to obtain a [20,20,3] shape tensor for each row in the csv.
My code so far:
I spent days of work already and feel confident, that this approoach might work out in the end.
import tensorflow as tf
BATCH_SIZE = 30
tf.enable_eager_execution()
X_csv_path = 'gs://my-bucket/dataX.csv'
X_dataset = tf.data.experimental.make_csv_dataset(X_csv_path, BATCH_SIZE, column_names=range(1200) , header=False)
X_dataset = X_dataset.map(lambda x: tf.stack(list(x.values())))
iterator = X_dataset.make_one_shot_iterator()
image = iterator.get_next()
I would expect to have a [30,1200] shape but I still get 1200 tensors of shape [30] instead. My idea is to read every line into a [1200] shaped tensor and then reshape the line to a [20,20,3] tensor to feed my model with. Thanks for your time!