Given a graph i need to generate all topological orderings. For instance, given the following graph:
i want to generate all topological orderings, which are:
- 2 4 7 5
- 2 7 4 5
- 2 4 5 7
Because many topological orderings may exist, I need to generate them lazily. Currently, I have a working implementation that is recursive and works on top of the scala-graph
library:
import scalax.collection.Graph
import scalax.collection.GraphPredef._
import scalax.collection.GraphEdge._
import scala.collection.mutable.ArrayStack
import scala.collection.Set
def allTopologicalSorts[T](graph: Graph[T, DiEdge]): Stream[List[graph.NodeT]] = {
val indegree: Map[graph.NodeT, Int] = graph.nodes.map(node => (node, node.inDegree)).toMap
def isSource(node: graph.NodeT): Boolean = indegree.get(node).get == 0
def getSources(): Set[graph.NodeT] = graph.nodes.filter(node => isSource(node))
def processSources(sources: Set[graph.NodeT], indegrees: Map[graph.NodeT, Int], topOrder: List[graph.NodeT], cnt: Int): Stream[List[graph.NodeT]] = {
if (sources.nonEmpty) {
// `sources` contain all the nodes we can pick
// --> generate all possibilities
sources.toStream.flatMap(src => {
val newTopOrder = src :: topOrder
var newSources = sources - src
// Decrease the in-degree of all adjacent nodes
var newIndegrees = indegrees
for (adjacent <- src.diSuccessors) {
val newIndeg = newIndegrees.get(adjacent).get - 1
newIndegrees = newIndegrees.updated(adjacent, newIndeg)
// If in-degree becomes zero, add to sources
if (newIndeg == 0) {
newSources = newSources + adjacent
}
}
processSources(newSources, newIndegrees, newTopOrder, cnt + 1)
})
}
else if (cnt != graph.nodes.size) {
throw new Error("There is a cycle in the graph.")
}
else {
topOrder.reverse #:: Stream.empty[List[graph.NodeT]]
}
}
processSources(getSources(), indegree, List[graph.NodeT](), 0)
}
Now, i can generate all (or only a few) topological orderings as follows:
val graph: Graph[Int, DiEdge] = Graph(2 ~> 4, 2 ~> 7, 4 ~> 5)
allTopologicalSorts(graph) foreach println
How can i make the algorithm tail recursive but still lazy?