I am trying to do time series prediction using GANs. I am using MXNet/Gluon. Thus, I have a sequential data of size (N, 1), which I have transformed it into (N-stepsize, stepsize). Now I have a hard time understanding the input out shapes of the network. Here, the code for Generator and Discriminator networks.
netG = nn.Sequential()
with netG.name_scope():
netG.add(nn.Dense(20))
netG.add(nn.BatchNorm(momentum = 0.8))
netG.add(nn.Dropout(0.5))
netG.add(nn.Dense(15))
netG.add(nn.BatchNorm(momentum = 0.8))
netG.add(nn.Dropout(0.5))
netG.add(nn.Dense(20))
netG.add(nn.BatchNorm(momentum = 0.8))
netG.add(nn.Dropout(0.5))
netG.add(nn.Dense(step_size, activation = "tanh"))
#300, 50, 2
#input shape is inferred
netD = nn.Sequential()
with netD.name_scope():
netD.add(nn.Dense(20))
netG.add(nn.BatchNorm(momentum = 0.8))
netD.add(nn.Dense(15, activation='tanh'))
netG.add(nn.BatchNorm(momentum = 0.8))
netD.add(nn.Dense(20, activation='tanh'))
netD.add(nn.Dense(step_size))
Thanks in advance.