My problems consists of the following: I am given two pairs angles (in spherical coordinates) which consists of two parts--an azimuth and a colatitude angle. If we extend both angles (thereby increasing their respective radii) infinitely to make a long line pointing in the direction given by the pair of angles, then my goal is to determine
- if they intersect or extremely close to one another and
- where exactly they intersect.
Currently, I have tried several methods:
The most obvious one is to iteratively compare each radii until there is either a match or a small enough distance between the two. (When I say compare each radii, I am referring to converting each spherical coordinate into Cartesian and then finding the euclidean distance between the two). However, this runtime is $O(n^{2})$, which is extremely slow if I am trying to scale this program
The second most obvious method is to use the optimization package to find this distance. Unfortunately, I cannot the optimization package iteratively and after one instance the optimization algorithm repeats the same answer, which is not useful.
The least obvious method is to directly calculate (using calculus) the exact radii from the angles. While this is fast method, it is not extremely accurate.
Note: while it might seem simple that the intersection is always at the zero-origin (0,0,0), this is not ALWAYS the case. Some points never intersect.
Code for Method (1)
def match1(azimuth_recon_1,colatitude_recon_1,azimuth_recon_2, colatitude_recon_2,centroid_1,centroid_2 ):
# Constants: tolerance factor and extremely large distance
tol = 3e-2
prevDist = 99999999
# Initialize a list of radii to loop through
# Checking iteravely for a solution
for r1 in list(np.arange(0,5,tol)):
for r2 in list(np.arange(0,5,tol)):
# Get the estimates
estimate_1 = np.array(spher2cart(r1,azimuth_recon_1,colatitude_recon_1)) + np.array(centroid_1)
estimate_2 = np.array(spher2cart(r2,azimuth_recon_2,colatitude_recon_2))+ np.array(centroid_2)
# Calculate the euclidean distance between them
dist = np.array(np.sqrt(np.einsum('i...,i...', (estimate_1 - estimate_2), (estimate_1 - estimate_2)))[:,np.newaxis])
# Compare the distance to this tolerance
if dist < tol:
if dist == 0:
return estimate_1, [], True
else:
return estimate_1, estimate_2, False
## If the distance is too big break out of the loop
if dist > prevDist:
prevDist = 9999999
break
prevDist = dist
return [], [], False
Code for Method (3)
def match2(azimuth_recon_1,colatitude_recon_1,azimuth_recon_2, colatitude_recon_2,centriod_1,centroid_2):
# Set a Tolerance factor
tol = 3e-2
def calculate_radius_2(azimuth_1,colatitude_1,azimuth_2,colatitude_2):
"""Return radius 2 using both pairs of angles (azimuth and colatitude). Equation is provided in the document"""
return 1/((1-(math.sin(azimuth_1)*math.sin(azimuth_2)*math.cos(colatitude_1-colatitude_2))
+math.cos(azimuth_1)*math.cos(azimuth_2))**2)
def calculate_radius_1(radius_2,azimuth_1,colatitude_1,azimuth_2,colatitude_2):
"""Returns radius 1 using both pairs of angles (azimuth and colatitude) and radius 2.
Equation provided in document"""
return (radius_2)*((math.sin(azimuth_1)*math.sin(azimuth_2)*math.cos(colatitude_1-colatitude_2))
+math.cos(azimuth_1)*math.cos(azimuth_2))
# Compute radius 2
radius_2 = calculate_radius_2(azimuth_recon_1,colatitude_recon_1,azimuth_recon_2,colatitude_recon_2)
#Compute radius 1
radius_1 = calculate_radius_1(radius_2,azimuth_recon_1,colatitude_recon_1,azimuth_recon_2,colatitude_recon_2)
# Get the estimates
estimate_1 = np.array(spher2cart(radius_1,azimuth_recon_1,colatitude_recon_1))+ np.array(centroid_1)
estimate_2 = np.array(spher2cart(radius_2,azimuth_recon_2,colatitude_recon_2))+ np.array(centroid_2)
# Calculate the euclidean distance between them
dist = np.array(np.sqrt(np.einsum('i...,i...', (estimate_1 - estimate_2), (estimate_1 - estimate_2)))[:,np.newaxis])
# Compare the distance to this tolerance
if dist < tol:
if dist == 0:
return estimate_1, [], True
else:
return estimate_1, estimate_2, False
else:
return [], [], False
My question is two-fold:
Is there a faster and more accurate way to find the radii for both points?
If so, how do I do it?
EDIT: I am thinking about just creating two numpy arrays of the two radii and then comparing them via numpy boolean logic. However, I would still be comparing them iteratively. Is there is a faster way to perform this comparison?