I'm teaching a modeling class in R. The students are all SAS users, and I have to create course materials that exactly match (when possible) SAS output. I'm working on the Poisson regression section and trying to match PROC GENMOD, with a "dscale" option that modifies the dispersion index so that the deviance/df==1.
Easy enough to do, but I need confidence intervals. I'd like to show the students how to do it without hand calculating them. Something akin to confint_default()
or confint()
Data
skin_cancer <- data.frame(CASES=c(1,16,30,71,102,130,133,40,4,38,
119,221,259,310,226,65),
CITY=c(rep(0,8),rep(1,8)),
N=c(172875, 123065,96216,92051,72159,54722,
32185,8328,181343,146207,121374,111353,
83004,55932,29007,7583),
agegp=c(1:8,1:8))
skin_cancer$ln_n = log(skin_cancer$N)
The model
fit <- glm(CASES ~ CITY, family="poisson", offset=ln_n, data=skin_cancer)
Changing the dispersion index
summary(fit, dispersion= deviance(fit) / df.residual(fit)))
That gets me the "correct" standard errors (correct according to SAS). But obviously I can't run confint()
on a summary()
object.
Any ideas? Bonus points if you can tell me how to change the dispersion index within the model so I don't have to do it within the summary()
call.
Thanks.