I am trying to solve a nonlinear system of equations by using the Solve (and NSolve) command, but the evaluation get stuck.
For a very similar system, basically the same but with the derivatives of the equations I get no problems. I define the functions I need, write the equations, define the variables, define the solutions through the Solve command, and, once obtained with another system the initial values, I try to solve the system with NSolve.
Defining the functions:
a[x_] := A (1 - ms[x])
b[x_]:=2 ((ArcSinh[nn[x]/ms[x]] ms[x]^3 + nn[x] ms[x] Sqrt[nn[x]^2 + ms[x]^2])/(8 \[Pi]^2) + (ArcSinh[pp[x]/ms[x]] ms[x]^3 + pp[x] ms[x] Sqrt[pp[x]^2 + ms[x]^2])/(8 \[Pi]^2))
where A is a constant. Here I deleted some multiplicative constants to simplify the problem.
Then I have the equations:
eq1[x_]:= B a[x] + C a[x]^2 + D a[x]^3 - F b[x]
eq2[x_]:= pp[x]^3 - nn[x]^3
eq3[x_]:= G - (pp[x]^3 + nn[x]^3)
eq4[x_]:= Sqrt[nn[x]^2 + ms[x]^2] - Sqrt[pp[x]^2 + ms[x]^2] - Sqrt[m + ee[x]^2] + H (pp[x]^3 - nn[x]^3)
where B, C, D, G, m and H are constants. Here too, I deleted some multiplicative constants, to simplify the code for you.
Finally, I define the variables:
Var = {ee[x], pp[x], nn[x], ms[x]}
then solve the system "implicitly":
Sol =
Solve[{eq1[x] == 0, eq2[x] == 0, eq3[x] == 0, eq4[x] == 0}, Var]
(N.B: it is here that the code get stuck!!!! Despite, as I said, with a similar system with derivatives of the equations, everything work fine.)
and make a list of the equations:
eqs =
Table[Var[[i]] == (Var[[i]] /. Sol[[1]]), {i, Length[Var]}];
To conclude, after having obtained the initial conditions, I would try to solve the system:
system0 = Flatten[{eqs, ee[xi] == eei, pp[xi] == ppi, nn[xi] == nni, ms[xi] == msi}];
sol0 = NSolve[system0, {ee, kpp, nn, ms}, {x, xi, xf}, Flatten[{MaxSteps -> 10^4, MaxStepFraction -> 10^-2, WorkingPrecision -> 30, InterpolationOrder -> All}, 1]];
where I previously set xi = 10^-8 and xf = 10.
Trying to be more clear, when I try to evaluate the system through the Solve command, the evaluation continues indefinitely and I cannot understand why, where is the mistake. Despite a similar system with the derivative of the previous equations and NSolve replaced with NDSolve, works without any problem, and the execution of the "equivalent" line (Sol = Solve[{eq1[x] == 0, eq2[x] == 0, eq3[x] == 0, eq4[x] == 0}, Core]) is extremely fast (~1 sec).
Any help to understand where I am wrong is welcome, as well any suggestion to solve numerically this kind of system of equations.
Trying to be more clear, when I try to evaluate the system through the Solve command, the evaluation continues indefinitely and I cannot understand why, where is the mistake. Despite a similar system with the derivative of the previous equations and NSolve replaced with NDSolve, works without any problem, and the execution of the "equivalent" line (Sol = Solve[{eq1[x] == 0, eq2[x] == 0, eq3[x] == 0, eq4[x] == 0}, Core]) is extremely fast (~1 sec).
Any help to understand where I am wrong is welcome, as well any suggestion to solve numerically this kind of system of equations.