I have a dataframe like this that contains a call center data:
In [3]: cluster_data.head()
Out[3]:
queue_id agent_id call_datetime ... caller_id waiting duration
id ...
100001 15 NaN 10/1/18 0:00 ... 2.490655e+13 36 0
100002 11 1135.0 10/1/18 0:01 ... 2.900872e+13 8 266
100003 11 1154.0 10/1/18 0:02 ... 8.442416e+12 85 78
100004 16 1594.0 10/1/18 0:02 ... 2.288829e+12 39 3040
100005 20 1343.0 10/1/18 0:02 ... 2.735932e+10 9 192
what I want to do is to count the number of calls by users that happened in each day.
I did it by groupby function and the result is like this
transformed = df.groupby('day')['caller_id'].value_counts()
day caller_id
01 3.413120e+13 13
6.720000e+03 11
..
16 3.352196e+13 1
3.369415e+13 1
3.480403e+13 1
now I want to write it back to my dataframe how can I do that? something like this:
Out[3]:
queue_id agent_id call_datetime ... caller_id waiting duration count
id ...
100001 15 NaN 10/1/18 0:00 ... 2.490655e+13 36 0 1