I want featuretools to create features based on time index and cutoff time that I have declared in my entity set.
I have a dataset with time variables as well as numerical and categorical variable. There is an ITEMID column, each ITEMID has 2 to 12 rows of data.
With Columns like start date and transaction dates, various numerical and categorical columns. The start date is same across all rows of a given ITEMID whereas transactions dates is different in each row.
Here is the code for entity set
# creating and entity set
entity_set = ft.EntitySet(id = 'rem_dur')
# adding a dataframe
entity_set.entity_from_dataframe(entity_id = 'enh', dataframe = dataset, index = 'unique_id'
,,variable_types = {'Start_Date': ft.variable_types.DatetimeTimeIndex}))
#unique_id is just row number from 1 to number of rows in dataset
entity_set.normalize_entity(base_entity_id='enh', new_entity_id= 'categorical_vars', index = 'ITEMID',
additional_variables = ['cat_var_1', 'cat_var_2'])
###cutoff date
cutoff_df = dataset[["unique_id", "trans_date"]]
cutoff_df["trans_date"] = pd.to_datetime(cutoff_df["trans_date"])
##feature engg
feature_matrix_2, feature_names_2 = ft.dfs(entityset=entity_set
,target_entity = 'enh'
,max_depth = 2
,verbose = 1
,ignore_entities = ['categorical_vars']
,ignore_variables =ignore_features_dict
,dask_kwargs={'cluster': cluster}
,cutoff_time=cutoff_df
,cutoff_time_in_index=False
)
It's unable to generate any time series features. It's returning just all the features except the ones which are ignored.