Edit:
To clarify why this question is different from the suggested duplicates, this SO question follows up on those suggested duplicates, on what exactly is Keras doing with the techniques described in those SO questions. The suggested duplicates specify using a dataset API make_one_shot_iterator()
in model.fit
, my follow up is that make_one_shot_iterator()
can only go through the dataset once, however in the solutions given, several epochs are specified.
This is a follow up to these SO questions
How to Properly Combine TensorFlow's Dataset API and Keras?
Tensorflow keras with tf dataset input
Using tf.data.Dataset as training input to Keras model NOT working
Where "Starting from Tensorflow 1.9, one can pass tf.data.Dataset object directly into keras.Model.fit() and it would act similar to fit_generator". Each example has a TF dataset one shot iterator fed into Kera's model.fit.
An example is given below
# Load mnist training data
(x_train, y_train), _ = tf.keras.datasets.mnist.load_data()
training_set = tfdata_generator(x_train, y_train,is_training=True)
model = # your keras model here
model.fit(
training_set.make_one_shot_iterator(),
steps_per_epoch=len(x_train) // 128,
epochs=5,
verbose = 1)
However, according the the Tensorflow Dataset API guide (here https://www.tensorflow.org/guide/datasets ) :
A one-shot iterator is the simplest form of iterator, which only supports iterating once through a dataset
So it's only good for 1 epoch. However, the codes in the SO questions specify several epochs, with the code example above specifying 5 epochs.
Is there any explanation for this contradiction? Does Keras somehow know that when the one shot iterator has gone through the dataset, it can re-initialize and shuffle the data?