1

I've two pyspark data frames. One contain FullAddress field(say col1) and another data frame contains name of city/town/suburb in one of the columns(say col2). I want to compare col2 with col1 and return col2 if there is a match.

Additionally, the suburb name could be a list of suburb name.

Dataframe1 that contains full address

+--------+--------+----------------------------------------------------------+
|Postcode|District|City/ Town/ Suburb                                        |
+--------+--------+----------------------------------------------------------+
|2000    |Sydney  |Dawes Point, Haymarket, Millers Point, Sydney, The Rocks  |
|2001    |Sydney  |Sydney                                                    |
|2113    |Sydney  |North Ryde                                                |
+--------+--------+----------------------------------------------------------+



+-----------------------------------------------------------+
|FullAddress                                                |
+-----------------------------------------------------------+
|BADAJOZ ROAD NORTH RYDE 2113, NSW, Australia               |
| HAY STREET HAYMARKET 2000, NSW, Australia                 |
| SMART STREET FAIRFIELD 2165, NSW, Australia               |
|CLARENCE STREET SYDNEY 2000, NSW, Australia                |
+-----------------------------------------------------------+

I would like to have something like this

+-----------------------------------------------------------++-----------+
|FullAddress                                                |suburb      |
+-----------------------------------------------------------++-----------+
|BADAJOZ ROAD NORTH RYDE 2113, NSW, Australia               |NORTH RYDE  |
| HAY STREET HAYMARKET 2000, NSW, Australia                 |HAYMARKET   |
| SMART STREET FAIRFIELD 2165, NSW, Australia               |NULL        |
|CLARENCE STREET SYDNEY 2000, NSW, Australia                |SYDNEY      |
+-----------------------------------------------------------++-----------+
Ali
  • 7,810
  • 12
  • 42
  • 65

1 Answers1

1

There are two DataFrames -

DataFrame 1: DataFrame containing the complete address.

DataFrame 2: DataFrame containing the base data - Postcode, District & City / Town / Suburb.

The aim of the problem is to extract the appropriate suburb for DataFrame 1 from DataFrame 2. Though OP has not explicitly specified the key on which we can join the two DataFrames, but Postcode only seems to be the reasonable choice.

# Importing requisite functions
from pyspark.sql.functions import col,regexp_extract,split,udf
from pyspark.sql.types import StringType

Let's create the DataFrame 1 as df. In this DataFrame we need to extract the Postcode. In Australia, all the post codes are 4 digit long, so we use regexp_extract() to extract 4 digit number from the string column.

df = sqlContext.createDataFrame([('BADAJOZ ROAD NORTH RYDE 2113, NSW, Australia ',),
                                 ('HAY STREET HAYMARKET 2000, NSW, Australia',),
                                 ('SMART STREET FAIRFIELD 2165, NSW, Australia',),
                                 ('CLARENCE STREET SYDNEY 2000, NSW, Australia',)],
                                 ('FullAddress',))
df = df.withColumn('Postcode', regexp_extract('FullAddress', "(\\d{4})" , 1 ))
df.show(truncate=False)
+---------------------------------------------+--------+
|FullAddress                                  |Postcode|
+---------------------------------------------+--------+
|BADAJOZ ROAD NORTH RYDE 2113, NSW, Australia |2113    |
|HAY STREET HAYMARKET 2000, NSW, Australia    |2000    |
|SMART STREET FAIRFIELD 2165, NSW, Australia  |2165    |
|CLARENCE STREET SYDNEY 2000, NSW, Australia  |2000    |
+---------------------------------------------+--------+

Now, that we have extracted the Postcode, we have created the key to join the two DataFrames. Let's create the DataFrame 2, from which we need to extract respective suburb.

df_City_Town_Suburb = sqlContext.createDataFrame([(2000,'Sydney','Dawes Point, Haymarket, Millers Point, Sydney, The Rocks'),
                                             (2001,'Sydney','Sydney'),(2113,'Sydney','North Ryde')],
                                             ('Postcode','District','City_Town_Suburb'))
df_City_Town_Suburb.show(truncate=False)

+--------+--------+--------------------------------------------------------+
|Postcode|District|City_Town_Suburb                                        |
+--------+--------+--------------------------------------------------------+
|2000    |Sydney  |Dawes Point, Haymarket, Millers Point, Sydney, The Rocks|
|2001    |Sydney  |Sydney                                                  |
|2113    |Sydney  |North Ryde                                              |
+--------+--------+--------------------------------------------------------+

Joining the two DataFrames with left join -

df = df.join(df_City_Town_Suburb.select('Postcode','City_Town_Suburb'), ['Postcode'],how='left')
df.show(truncate=False)
+--------+---------------------------------------------+--------------------------------------------------------+
|Postcode|FullAddress                                  |City_Town_Suburb                                        |
+--------+---------------------------------------------+--------------------------------------------------------+
|2113    |BADAJOZ ROAD NORTH RYDE 2113, NSW, Australia |North Ryde                                              |
|2165    |SMART STREET FAIRFIELD 2165, NSW, Australia  |null                                                    |
|2000    |HAY STREET HAYMARKET 2000, NSW, Australia    |Dawes Point, Haymarket, Millers Point, Sydney, The Rocks|
|2000    |CLARENCE STREET SYDNEY 2000, NSW, Australia  |Dawes Point, Haymarket, Millers Point, Sydney, The Rocks|
+--------+---------------------------------------------+--------------------------------------------------------+

Splitting the column City_Town_Suburb into an array using split() function -

df = df.select('Postcode','FullAddress',split(col("City_Town_Suburb"), ",\s*").alias("City_Town_Suburb"))
df.show(truncate=False)
+--------+---------------------------------------------+----------------------------------------------------------+
|Postcode|FullAddress                                  |City_Town_Suburb                                          |
+--------+---------------------------------------------+----------------------------------------------------------+
|2113    |BADAJOZ ROAD NORTH RYDE 2113, NSW, Australia |[North Ryde]                                              |
|2165    |SMART STREET FAIRFIELD 2165, NSW, Australia  |null                                                      |
|2000    |HAY STREET HAYMARKET 2000, NSW, Australia    |[Dawes Point, Haymarket, Millers Point, Sydney, The Rocks]|
|2000    |CLARENCE STREET SYDNEY 2000, NSW, Australia  |[Dawes Point, Haymarket, Millers Point, Sydney, The Rocks]|
+--------+---------------------------------------------+----------------------------------------------------------+

Finally creating a UDF to check each and every element of the array City_Town_Suburb if it exists in the column FullAddress. If there exists a one, we return that immediately, else None is returned.

def suburb(FullAddress,City_Town_Suburb):
   # Check for the case where there is no Array, otherwise we will get an Error
   if City_Town_Suburb == None:
      return None
   # Checking each and every Array element if it exists in 'FullAddress',
   # and if a match is found, it's immediately returned.
   for sub in City_Town_Suburb:
      if sub.strip().upper() in FullAddress:
         return sub.upper()
   return None
suburb_udf = udf(suburb,StringType())

Applying this UDF -

df = df.withColumn('suburb', suburb_udf(col('FullAddress'),col('City_Town_Suburb'))).drop('City_Town_Suburb')
df.show(truncate=False)
+--------+---------------------------------------------+----------+
|Postcode|FullAddress                                  |suburb    |
+--------+---------------------------------------------+----------+
|2113    |BADAJOZ ROAD NORTH RYDE 2113, NSW, Australia |NORTH RYDE|
|2165    |SMART STREET FAIRFIELD 2165, NSW, Australia  |null      |
|2000    |HAY STREET HAYMARKET 2000, NSW, Australia    |HAYMARKET |
|2000    |CLARENCE STREET SYDNEY 2000, NSW, Australia  |SYDNEY    |
+--------+---------------------------------------------+----------+
cph_sto
  • 7,189
  • 12
  • 42
  • 78