I program Keras's code to train GoogleNet. However, accuracy gotten from fit() is 100% yet with the same training dataset used for evaluate(), accuracy remains 25% only, which has such huge discrepancy!!! Also, accuracy by evaluate(), which is not like fit(), won't get improved for training more times, which means it almost stays in 25%.
Does anyone has idea of what is wrong with this situation?
# Training Dataset and labels r given. Here load GoogleNet model
from keras.models import load_model
model = load_model('FT_InceptionV3.h5')
# Training Phase
model.fit(x=X_train,
y=y_train,
batch_size=5,
epochs=20,
validation_split=0,
#callbacks=[tensorboard]
)
#Testing Phase
train_loss , train_acc=model.evaluate(X_train, y_train, verbose=1)
print("Train loss=",train_loss,"Train accuracy",train_acc)