A good language for logic programming should allow the programmer to use a language close to the language used by the mathematicians. Therefore, I have always considered the lack of proper universal quantifier in Prolog an important shortcoming.
Today an idea came to me how to define something much better than forall
and foreach
.
forany(Var, {Context}, Condition, Body)
This predicate tries to prove Body
for all instantiations Var
gets successively on backtracking over Condition
. All variables in Condition
and Body
are considered local unless listed in Var
or Context
. Condition
is not permitted to modify in any way the variables listed in Context
, otherwise forany
won't work correctly.
Here is the implementation (based on yall):
forany(V, {Vars}, Goal1, Goal2) :-
( bagof(V, {V,Vars}/Goal1, Solutions)
-> maplist({Vars}/[V]>>Goal2, Solutions)
; true ).
My first question is about the second argument of forany
. I'd like to eliminate it.
Now some examples
Construct a list of the first 8 squares:
?- length(X,8), forany(N, {X}, between(1,8,N),
(Q is N*N, nth1(N, X, Q))).
X = [1, 4, 9, 16, 25, 36, 49, 64].
Reverse a list:
?- X=[1,2,3,4,5], length(X,N), length(Y,N),
forany(I, {X,Y,N}, between(1,N,I),
(J is N-I+1, nth1(I,X,A), nth1(J,Y,A))).
X = [1, 2, 3, 4, 5],
N = 5,
Y = [5, 4, 3, 2, 1].
Subset:
subset(X, Y) :- forany(A, {X,Y}, member(A,X), member(A, Y)).
A funny way to generate all permutations of a list without duplicates:
permutation(X, Y) :-
length(X, N), length(Y, N), subset(X, Y).
?- permutation([1,2,3],X).
X = [1, 2, 3] ;
X = [1, 3, 2] ;
X = [2, 1, 3] ;
X = [2, 3, 1] ;
X = [3, 1, 2] ;
X = [3, 2, 1] ;
false.
A funny way to sort a list of different integers. Notice that constraints are used to make the list sorted so most permutations won't be generated:
sorted(X) :- forany(A-B, {X}, append(_, [A,B|_], X),
A#<B).
?- X=[7,3,8,2,6,4,9,5,1], length(X, N), length(Y, N),
sorted(Y), subset(X,Y).
X = [7, 3, 8, 2, 6, 4, 9, 5, 1],
N = 9,
Y = [1, 2, 3, 4, 5, 6, 7, 8, 9] .
The problem
It seems that this forany
works brilliantly when constraints are not used. Also, it can be used to generate constraints, but at least on SWI-Prolog there are problems when constraints already have been generated. The reason for this is that forany
uses bagof
and according to the manual of SWI-Prolog:
Term-copying operations (
assertz/1
,retract/1
,findall/3
,copy_term/2
, etc.) generally also copy constraints. The effect varies from ok, silent copying of huge constraint networks to violations of the internal consistency of constraint networks. As a rule of thumb, copying terms holding attributes must be deprecated. If you need to reason about a term that is involved in constraints, usecopy_term/3
to obtain the constraints as Prolog goals, and use these goals for further processing.
Here is a demonstration of the problem bagof
creates with constraints:
?- X=[A,B,C], dif(C,D), bagof(_, K^member(K,X), _).
X = [A, B, C],
dif(C, _5306),
dif(C, _5318),
dif(C, _5330),
dif(C, D).
As you can see, three unnecessary constraints are created.
My second question is if this is a problem only of SWI-Prolog.
And the third question: is there a way to fix this in SWI-Prolog. The above quote from the manual suggests that copy_term/3
should be used. Unfortunately, I don't understand this suggestion and I don't know if it is useful for forany
.