Your b
is a list of arrays:
In [84]: b = list(map(lambda x:np.arange(x, x+10), np.arange(0, 5)))
In [85]: b
Out[85]:
[array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
array([ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]),
array([ 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]),
array([ 4, 5, 6, 7, 8, 9, 10, 11, 12, 13])]
When used as an index:
In [86]: np.arange(1000)[b]
/usr/local/bin/ipython3:1: FutureWarning: Using a non-tuple sequence for multidimensional
indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`.
In the future this will be interpreted as an array index, `arr[np.array(seq)]`,
which will result either in an error or a different result.
#!/usr/bin/python3
---------------------------------------------------------------
IndexError: too many indices for array
A[1,2,3]
is the same as A[(1,2,3)]
- that is, the comma separated indices are a tuple, which is then passed on to the indexing function. Or to put it another way, a multidimensional index should be a tuple (that includes ones with slices).
Up to now numpy
has been a bit sloppy, and allowed us to use a list of indices in the same way. The warning tells us that the developers are in the process of tightening up those restrictions.
The error means it is trying to interpret each array in your list as the index for a separate dimension. An array can have at most 32 dimensions. Evidently for the longer list it doesn't try to treat it as a tuple, and instead creates a 2d array for indexing.
There are various ways we can use your b
to index a 1d array:
In [87]: np.arange(1000)[np.hstack(b)]
Out[87]:
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13])
In [89]: np.arange(1000)[np.array(b)] # or np.vstack(b)
Out[89]:
array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
[ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],
[ 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
[ 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]])
In [90]: np.arange(1000)[b,] # 1d tuple containing b
Out[90]:
array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
[ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],
[ 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
[ 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]])
Note that if b
is a ragged list - one or more of the arrays is shorter, only the hstack
version works.