I am in the process of going to dummy encode a dask dataframe train_final[categorical_var]
. However, when I run the code I get a memory error. Could this happen since dask is supposed to do it by loading data chunk by chunk.
The code is below:
from dask_ml.preprocessing import DummyEncoder
de = DummyEncoder()
train_final_cat = de.fit_transform(train_final[categorical_var])
The error:
---------------------------------------------------------------------------
MemoryError Traceback (most recent call last)
<ipython-input-84-e21592c13279> in <module>
1 from dask_ml.preprocessing import DummyEncoder
2 de = DummyEncoder()
----> 3 train_final_cat = de.fit_transform(train_final[categorical_var])
~/env/lib/python3.5/site-packages/sklearn/base.py in fit_transform(self, X, y, **fit_params)
460 if y is None:
461 # fit method of arity 1 (unsupervised transformation)
--> 462 return self.fit(X, **fit_params).transform(X)
463 else:
464 # fit method of arity 2 (supervised transformation)
~/env/lib/python3.5/site-packages/dask_ml/preprocessing/data.py in fit(self, X, y)
602
603 self.transformed_columns_ = pd.get_dummies(
--> 604 sample, drop_first=self.drop_first
605 ).columns
606 return self
~/env/lib/python3.5/site-packages/pandas/core/reshape/reshape.py in get_dummies(data, prefix, prefix_sep, dummy_na, columns, sparse, drop_first, dtype)
890 dummy = _get_dummies_1d(col[1], prefix=pre, prefix_sep=sep,
891 dummy_na=dummy_na, sparse=sparse,
--> 892 drop_first=drop_first, dtype=dtype)
893 with_dummies.append(dummy)
894 result = concat(with_dummies, axis=1)
~/env/lib/python3.5/site-packages/pandas/core/reshape/reshape.py in _get_dummies_1d(data, prefix, prefix_sep, dummy_na, sparse, drop_first, dtype)
978
979 else:
--> 980 dummy_mat = np.eye(number_of_cols, dtype=dtype).take(codes, axis=0)
981
982 if not dummy_na:
~/env/lib/python3.5/site-packages/numpy/lib/twodim_base.py in eye(N, M, k, dtype, order)
184 if M is None:
185 M = N
--> 186 m = zeros((N, M), dtype=dtype, order=order)
187 if k >= M:
188 return m
MemoryError:
Would anyone be able to give me some direction in this regard
Thanks
Michael