Consider mapply
or its non-simplified wrapper, Map
, to iterate elementwise through the pairings of start and end dates and corresponding symbols. Also, avoid the use of assign
and get
and build list of data frames for final rbind
at the end:
library(XML)
...
dateGroup <- data.frame(
start = c(1509519600, 1518159600, 1526799600, 1535439600, 1544079600),
end = c(1518073200, 1526713200, 1535353200, 1543993200, 1550732400)
)
# CROSS JOIN ALL SYMBOLS WITH EACH DATE PAIRING
dt_grp_sym <- merge(dateGroup, data.frame(symbols))
# DEFINED METHOD FOR HTML PROCESSING
proc_html <- function(sym, sd, ed) {
url <- paste0('https://finance.yahoo.com/quote/', sym, '/history?period1=',
sd, '&period2=', ed, '&interval=1d&filter=history&frequency=1d')
print(url)
webpage <- readLines(url, warn=FALSE)
html <- htmlTreeParse(webpage, useInternalNodes = TRUE, asText = TRUE)
tableNodes <- getNodeSet(html, "//table")
html_df <- transform(readHTMLTable(tableNodes[[1]],
header=c("Date", "Open", "High", "Low",
"Close", "Adj. Close", "Volume")),
symbol = sym)
return(html_df)
}
# ITERATE ELEMENTWISE THROUGH EVERY ROW of dt_grp_sym
df_list <- Map(proc_html, dt_grp_sym$symbols, dt_grp_sym$start, dt_grp_sym$end)
final_df <- do.call(rbind, df_list)
To demonstrate using the Class 1 U.S. railroads:
symbols <- c("UNP", "CSX", "NSC", "CNI", "KSU")
dateGroup <- data.frame(
start = c(1509519600, 1518159600, 1526799600, 1535439600, 1544079600),
end = c(1518073200, 1526713200, 1535353200, 1543993200, 1550732400)
)
dt_grp_sym <- merge(dateGroup, data.frame(symbols))
# CALLING SAME ABOVE FUNCTION
df_list <- with(dt_grp_sym, Map(proc_html, symbols, start, end))
final_df <- do.call(rbind, df_list)
Output
by(final_df, final_df$symbol, head)
# final_df$symbol: CNI
# Date Open High Low Close Adj..Close Volume symbol
# 998 Feb 08, 2018 76.08 76.16 74.11 74.45 72.79 1,508,100 CNI
# 999 Feb 07, 2018 76.86 77.23 76.01 76.17 74.48 1,645,400 CNI
# 1000 Feb 06, 2018 76.21 77.42 74.81 77.14 75.42 2,293,300 CNI
# 1001 Feb 05, 2018 78.00 78.70 77.12 77.17 75.45 1,711,000 CNI
# 1002 Feb 02, 2018 79.17 79.24 78.17 78.46 76.71 1,331,400 CNI
# 1003 Feb 01, 2018 79.91 80.54 79.24 79.82 78.04 1,231,500 CNI
# ------------------------------------------------------------------------------
# final_df$symbol: CSX
# Date Open High Low Close Adj..Close Volume symbol
# 333 Feb 08, 2018 52.91 53.16 50.46 50.47 49.80 7,798,100 CSX
# 334 Feb 07, 2018 53.38 54.36 52.94 52.97 52.26 6,496,200 CSX
# 335 Feb 06, 2018 51.27 54.00 50.12 53.82 53.10 10,563,700 CSX
# 336 Feb 05, 2018 54.89 55.04 51.96 51.99 51.30 9,070,200 CSX
# 337 Feb 02, 2018 56.19 56.35 55.20 55.25 54.51 9,275,800 CSX
# 338 Feb 01, 2018 56.10 57.10 56.04 56.58 55.83 4,079,100 CSX
# ------------------------------------------------------------------------------
# final_df$symbol: KSU
# Date Open High Low Close Adj..Close Volume symbol
# 1330 Feb 08, 2018 107.17 107.64 103.50 103.53 102.15 1,434,600 KSU
# 1331 Feb 07, 2018 106.59 108.27 106.59 107.10 105.67 1,326,800 KSU
# 1332 Feb 06, 2018 103.11 108.02 102.07 107.32 105.89 1,459,400 KSU
# 1333 Feb 05, 2018 109.73 110.44 105.12 105.18 103.77 1,272,100 KSU
# 1334 Feb 02, 2018 112.06 112.85 110.03 110.15 108.68 1,051,900 KSU
# 1335 Feb 01, 2018 112.80 114.00 112.17 112.87 111.36 1,011,200 KSU
# ------------------------------------------------------------------------------
# final_df$symbol: NSC
# Date Open High Low Close Adj..Close Volume symbol
# 665 Feb 08, 2018 142.62 143.27 136.87 136.89 134.22 2,657,200 NSC
# 666 Feb 07, 2018 142.09 144.45 141.37 142.68 139.89 1,464,500 NSC
# 667 Feb 06, 2018 136.99 143.45 134.55 143.05 140.26 2,455,000 NSC
# 668 Feb 05, 2018 144.74 146.73 138.18 138.61 135.90 2,508,900 NSC
# 669 Feb 02, 2018 147.15 147.85 144.61 145.03 142.20 1,774,600 NSC
# 670 Feb 01, 2018 149.28 150.35 147.90 148.47 145.57 1,427,000 NSC
# ------------------------------------------------------------------------------
# final_df$symbol: UNP
# Date Open High Low Close Adj..Close Volume symbol
# 1 Feb 08, 2018 128.70 128.70 124.81 124.86 122.27 6,325,100 UNP
# 2 Feb 07, 2018 130.34 131.82 128.94 128.96 126.29 5,053,000 UNP
# 3 Feb 06, 2018 122.28 131.50 121.50 131.15 128.43 15,734,300 UNP
# 4 Feb 05, 2018 128.59 131.78 124.13 124.14 121.57 6,744,400 UNP
# 5 Feb 02, 2018 131.66 131.73 127.22 129.36 126.68 8,181,200 UNP
# 6 Feb 01, 2018 132.51 133.74 131.86 132.38 129.64 5,597,600 UNP