So I have this issue where I have to find the best distribution that, when passed through a function, matches a known surface. I have written a script that creates the distribution given some parameters and spits out a metric that compares the given surface to the known, but this script takes a non-negligible time, so I can't just run through a very large set of parameters to find the optimal set of parameters. I looked into the simplex method, and it seems to be the right path, but its not quite what I need, because I dont exactly have a set of linear equations, and dont know the constraints for the parameters, but rather one method that gives a single output (an thats all). Can anyone point me in the right direction to how to solve this problem? Thanks!
To quickly go over my process / problem again, I have a set of parameters (at this point 2 but will be expanded to more later) that defines a distribution. This distribution is used to create a surface, which is compared to a known surface, and an error metric is produced. I want to find the optimal set of parameters, but cannot run through an arbitrarily large number of parameters due to the time constraint.