Disclaimer: Cross-post on Stack Computational Science
Aim: I am trying to numerically solve a Lotka-Volterra ODE in R, using de sde.sim()
function in the sde package. I would like to use the sde.sim()
function in order to eventually transform this system into an SDE. So initially, I started with an simple ODE system (Lotka Volterra model) without a noise term.
The Lotka-Volterra ODE system:
with initial values for x = 10 and y = 10.
The parameter values for alpha, beta, delta and gamma are 1.1, 0.4, 0.1 and 0.4 respectively (mimicking this example).
Attempt to solve problem:
library(sde)
d <- expression((1.1 * x[0] - 0.4 * x[0] * x[1]), (0.1 * x[0] * x[1] - 0.4 * x[1]))
s <- expression(0, 0)
X <- sde.sim(X0=c(10,10), T = 10, drift=d, sigma=s)
plot(X)
However, this does not seem to generate a nice cyclic behavior of the predator and prey population.
Expected Output
I used the deSolve
package in R to generate the expected output.
library(deSolve)
alpha <-1.1
beta <- 0.4
gamma <- 0.1
delta <- 0.4
yini <- c(X = 10, Y = 10)
Lot_Vol <- function (t, y, parms) {
with(as.list(y), {
dX <- alpha * X - beta * X * Y
dY <- 0.1 * X * Y - 0.4 * Y
list(c(dX, dY))
}) }
times <- seq(from = 0, to = 100, by = 0.01)
out <- ode(y = yini, times = times, func = Lot_Vol, parms = NULL)
plot(y=out[, "X"], x = out[, "time"], type = 'l', col = "blue", xlab = "Time", ylab = "Animals (#)")
lines(y=out[, "Y"], x = out[, "time"], type = 'l', col = "red")
Question
I think something might be wrong the the drift function, however, I am not sure what. What is going wrong in the attempt to solve this system of ODEs in sde.sim()
?