I have read most related questions here, but I cannot seem to figure out how to use np.pad
in this case. Maybe it is not meant for this particular problem.
Let's say I have a list of Numpy arrays. Every array is the same length, e.g. 2. The list itself has to be padded to be e.g. 5 arrays and can be transformed into a numpy array as well. The padded elements should be arrays filled with zeroes. As an example
arr = [array([0, 1]), array([1, 0]), array([1, 1])]
expected_output = array([array([0, 1]), array([1, 0]), array([1, 1]), array([0, 0]), array([0, 0])])
The following seems to work, but I feel there must be a better and more efficient way. In reality this is run hundreds of thousands if not millions of times so speed is important. Perhaps with np.pad
?
import numpy as np
def pad_array(l, item_size, pad_size=5):
s = len(l)
if s < pad_size:
zeros = np.zeros(item_size)
for _ in range(pad_size-s):
# not sure if I need a `copy` of zeros here?
l.append(zeros)
return np.array(l)
B = [np.array([0,1]), np.array([1,0]), np.array([1,1])]
AB = pad_array(B, 2)
print(AB)