I'm using mobilenet v2 to train a model on my images. I've frozen all but a few layers and then added additional layers for training. I'd like to be able to train from an intermediate layer rather than from the beginning. My questions:
- Is it possible to provide the output of the last frozen layer as the input for training (it would be a tensor of (?, 7,7,1280))?
- How does one specify training to start from that first trainable (non-frozen) layer? In this case, mbnetv2_conv.layer[153].
- What is y_train in this case? I don't quite understand how y_train is being used during the training process- in general, when does the CNN refer back to y_train?
Load mobilenet v2
image_size = 224
mbnetv2_conv = MobileNetV2(weights='imagenet', include_top=False, input_shape=(image_size, image_size, 3))
# Freeze all layers except the last 3 layers
for layer in mbnetv2_conv.layers[:-3]:
layer.trainable = False
# Create the model
model = models.Sequential()
model.add(mbnetv2_conv)
model.add(layers.Flatten())
model.add(layers.Dense(16, activation='relu'))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(3, activation='softmax'))
model.summary()
# Build an array (?,224,224,3) from images
x_train = np.array(all_images)
# Get layer output
from keras import backend as K
get_last_frozen_layer_output = K.function([mbnetv2_conv.layers[0].input],
[mbnetv2_conv.layers[152].output])
last_frozen_layer_output = get_last_frozen_layer_output([x_train])[0]
# Compile the model
from keras.optimizers import SGD
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['acc'])
# how to train from a specific layer and what should y_train be?
model.fit(last_frozen_layer_output, y_train, batch_size=2, epochs=10)