I'm learning to use cupy. But I've found a problem really confusing. It seems that cupy performs well in a program at first. When it runs for a while, Cupy seems be much slower. Here is the code:
import cupy as np
from line_profiler import LineProfiler
def test(ary):
for i in range(1000):
ary**6
def main():
rand=np.random.rand(1024,1024)
test(rand)
test(rand)
test(rand)
test(rand)
test(rand)
test(rand)
test(rand)
lp = LineProfiler()
lp_wrapper = lp(main)
lp_wrapper()
lp.print_stats()
and here is the time performance:
Timer unit: 2.85103e-07 s
Total time: 16.3308 s
File: E:\Desktop\test.py
Function: main at line 8
Line # Hits Time Per Hit % Time Line Contents
==============================================================
8 def main():
9 1 1528817.0 1528817.0 2.7 rand=np.random.rand(1024,1024)
10 1 111014.0 111014.0 0.2 test(rand)
11 1 94528.0 94528.0 0.2 test(rand)
12 1 95636.0 95636.0 0.2 test(rand)
13 1 94892.0 94892.0 0.2 test(rand)
14 1 7728318.0 7728318.0 13.5 test(rand)
15 1 23872383.0 23872383.0 41.7 test(rand)
16 1 23754666.0 23754666.0 41.5 test(rand)
When cupy completed 5000 times of power openrations, it becomes very slow.
I ran this code on Windows, and the cuda version is 10.0
Hope for answers. Thanks you very much!
Thanks for your answer! I printed Cupy's memory usage:
import cupy as np
def test(ary):
mempool = cupy.get_default_memory_pool()
pinned_mempool = cupy.get_default_pinned_memory_pool()
for i in range(1000):
ary**6
print("used bytes: %s"%mempool.used_bytes())
print("total bytes: %s\n"%mempool.total_bytes())
def main():
rand=np.random.rand(1024,1024)
test(rand)
test(rand)
test(rand)
test(rand)
test(rand)
test(rand)
test(rand)
and here is the output:
used bytes: 8388608
total bytes: 16777216
used bytes: 8388608
total bytes: 16777216
used bytes: 8388608
total bytes: 16777216
used bytes: 8388608
total bytes: 16777216
used bytes: 8388608
total bytes: 16777216
used bytes: 8388608
total bytes: 16777216
used bytes: 8388608
total bytes: 16777216
It seems that the GPU memory usage remain the same during the iteration.
By the way, is there any way to avoid this speed reduction?