You are given two arrays:
countries= [['Canada', 2], ['Chile', 1], ['China', 1]]
keys = [:country, :count]
You could write
[keys].product(countries).map { |arr| arr.transpose.to_h }
#=> [{:country=>"Canada", :count=>2},
# {:country=>"Chile", :count=>1},
# {:country=>"China", :count=>1}]
or simply
countries.map { |country, cnt| { country: country, count: cnt } }
#=> [{:country=>"Canada", :count=>2},
# {:country=>"Chile", :count=>1},
# {:country=>"China", :count=>1}]
but the first has the advantage that no code need be changed in the names of the keys change. In fact, there would be no need to change the code if the arrays countries
and keys
both changed, provided countries[i].size == keys.size
for all i = 0..countries.size-1
. (See the example at the end.)
The initial step for the first calculation is as follows.
a = [keys].product(countries)
#=> [[[:country, :count], ["Canada", 2]],
# [[:country, :count], ["Chile", 1]],
# [[:country, :count], ["China", 1]]]
See Array#product. We now have
a.map { |arr| arr.transpose.to_h }
map
passes the first element of a
to the block and sets the block variable arr
to that value:
arr = a.first
#=> [[:country, :count], ["Canada", 2]]
The block calculation is then performed:
b = arr.transpose
#=> [[:country, "Canada"], [:count, 2]]
b.to_h
#=> {:country=>"Canada", :count=>2}
So we see that a[0]
(arr
) is mapped to {:country=>"Canada", :count=>2}
. The next two elements of a
are then passed to the block and similar calculations are made, after which map
returns the desired array of three hashes. See Array#transpose and Array#to_h.
Here is a second example using the same code.
countries= [['Canada', 2, 9.09], ['Chile', 1, 0.74],
['China', 1, 9.33], ['France', 1, 0.55]]
keys = [:country, :count, :area]
[keys].product(countries).map { |arr| arr.transpose.to_h }
#=> [{:country=>"Canada", :count=>2, :area=>9.09},
# {:country=>"Chile", :count=>1, :area=>0.74},
# {:country=>"China", :count=>1, :area=>9.33},
# {:country=>"France", :count=>1, :area=>0.55}]