pandas.Interval can be used to define if a value falls within an interval in a neat way, e.g.:
In [1]: import numpy as np
In [2]: import pandas as pd
In [3]: iv = pd.Interval(0, 5.5)
In [4]: 4.37 in iv
Out[4]: True
Is it possible to check inclusion for all elements of an array instead of a single value? The result would be the same as in:
In [5]: arr = np.array(((1,8),(-4,3.5)))
In [6]: arr
Out[6]:
array([[ 1. , 8. ],
[-4. , 3.5]])
In [7]: (arr > iv.left) & (arr <= iv.right)
Out[7]:
array([[ True, False],
[False, True]])
But using a simpler syntax which is cool about pd.Interval. Something like the below which does not work:
In [8]: arr in iv
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-15-a118a68ee023> in <module>()
----> 1 arr in iv
pandas/_libs/interval.pyx in pandas._libs.interval.Interval.__contains__()
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()