1

I have an ILP which is ok with small problems. Gurobi easily converged and returned correct answers for these small problems. But when it comes to a little larger problems, it does not converge after even 2 days. I have changed many parameters like "MIPFocus", "ImproveStartGap", "Cuts", "ImproveStartTime" and even "Heuristics"., but nothing happens.

Could you please help me with this issue? Is there any way to reach convergence sooner at the cost of loosing optimally? what's the problem?

Best, Amir

FYI, this ILP has10135 integer variables (most of them, 10044, are binary ). the below is log when I stop the program:

Academic license - for non-commercial use only
Optimize a model with 131848 rows, 20748 columns and 577874 nonzeros
Variable types: 0 continuous, 20748 integer (20657 binary)
Coefficient statistics:
  Matrix range     [1e+00, 1e+05]
  Objective range  [4e+01, 8e+01]
  Bounds range     [1e+00, 1e+00]
  RHS range        [1e+00, 3e+05]
Presolve removed 23245 rows and 10613 columns
Presolve time: 1.67s
Presolved: 108603 rows, 10135 columns, 526215 nonzeros
Variable types: 0 continuous, 10135 integer (10044 binary)
Presolved: 10135 rows, 118738 columns, 536350 nonzeros


Root relaxation: objective 9.360000e+03, 10205 iterations, 0.79 seconds
Total elapsed time = 5.06s

    Nodes    |    Current Node    |     Objective Bounds      |     Work
 Expl Unexpl |  Obj  Depth IntInf | Incumbent    BestBd   Gap | It/Node Time

     0     0 9360.00000    0  299          - 9360.00000      -     -    5s
     0     0 9360.00000    0  223          - 9360.00000      -     -    8s
     0     2 9360.00000    0  150          - 9360.00000      -     -   23s
    30    31 9360.00000    9  188          - 9360.00000      -  64.8   25s
   207   208 9360.00000   64  263          - 9360.00000      -  14.4   31s
   400   399 9360.00000  109  298          - 9360.00000      -  10.3   36s
   587   584 9360.00000  156  319          - 9360.00000      -   9.5   41s
   804   794 9360.00000  209  363          - 9360.00000      -   8.8   47s
   918   905 9360.00000  238  303          - 9360.00000      -   8.6   50s
  1159  1133 9360.00000  294  288          - 9360.00000      -   8.3   56s
  1281  1247 9360.00000  319  371          - 9360.00000      -   8.2   60s
  1534  1471 9360.00000   23  208          - 9360.00000      -   8.1   66s
  1809  1736 9360.00000  237  223          - 9360.00000      -   8.0   71s
  1811  1737 9360.00000   89  670          - 9360.00000      -   8.0   87s
  1812  1738 9360.00000  192  572          - 9360.00000      -   8.0   96s
  1813  1739 9360.00000   93  572          - 9360.00000      -   8.0  109s
  1814  1742 9360.00000   11  371          - 9360.00000      -   9.3  117s
  1865  1775 9360.00000   19  399          - 9360.00000      -   9.5  120s
  1967  1840 9360.00000   31  395          - 9360.00000      -   9.1  125s
  2180  1984 9360.00000   56  435          - 9360.00000      -   9.1  130s
  2383  2121 9360.00000   84  408          - 9360.00000      -   9.4  136s
  2495  2197 9360.00000   97  403          - 9360.00000      -   9.5  140s
  2712  2337 9360.00000  124  425          - 9360.00000      -   9.6  147s
  2829  2416 9360.00000  137  448          - 9360.00000      -   9.6  151s
  2957  2505 9360.00000  153  421          - 9360.00000      -   9.6  155s
  3196  2660 9360.00000  183  389          - 9360.00000      -   9.6  164s
  3291  2721 9360.00000  195  412          - 9360.00000      -   9.6  168s
  3383  2789 9360.00000  208  424          - 9360.00000      -   9.8  173s
  3475  2850 9360.00000  221  427          - 9360.00000      -  10.0  177s
  3590  2909 9360.00000  235  433          - 9360.00000      -  10.0  182s
  3716  2990 9360.00000  250  424          - 9360.00000      -  10.1  187s
  3830  3054 9360.00000  266  398          - 9360.00000      -  10.2  192s
  3987  3151 9360.00000  285  400          - 9360.00000      -  10.2  197s
  4079  3212 9360.00000  299  409          - 9360.00000      -  10.2  203s
  4294  3385 infeasible  327               - 9360.00000      -  10.2  208s
  4489  3316 9360.00000   61  404          - 9360.00000      -  10.3  213s
  4688  3528 9360.00000  104  410          - 9360.00000      -  10.4  219s
  4953  3715 9360.00000  144  409          - 9360.00000      -  10.2  225s
  5175  3864 9360.00000  187  413          - 9360.00000      -  10.2  232s
  5455  4022 9360.00000  221  427          - 9360.00000      -  10.0  239s
  5683  4172 9360.00000  264  397          - 9360.00000      -  10.0  246s
  5891  4318 9360.00000  300  395          - 9360.00000      -  10.0  254s
  6211  4448 9360.00000   58  421          - 9360.00000      -   9.9  261s
  6508  4642 9360.00000  110  472          - 9360.00000      -   9.9  268s
  6856  4855 9360.00000  183  452          - 9360.00000      -   9.8  276s
  7127  5068 9360.00000  231  397          - 9360.00000      -   9.9  285s
  7508  5455 9360.00000  299  450          - 9360.00000      -   9.8  294s
  7906  5732 9360.00000  350  400          - 9360.00000      -   9.7  303s
  8105  5876 9360.00000  353  405          - 9360.00000      -   9.9  313s
  8347  6093 9360.00000  362  366          - 9360.00000      -  10.1  323s
  8657  6374 9360.00000   75  424          - 9360.00000      -  10.2  334s
  8962  6663 9360.00000  135  506          - 9360.00000      -  10.3  345s
  9380  7037 9360.00000  209  463          - 9360.00000      -  10.3  356s
  9722  7363 9360.00000  302  445          - 9360.00000      -  10.4  368s
 10215  7802 9360.00000   48  392          - 9360.00000      -  10.3  381s
 10594  8171 9360.00000  128  488          - 9360.00000      -  10.3  394s
 11142  8706 9360.00000  231  488          - 9360.00000      -  10.2  408s
 11727  9203 infeasible  348               - 9360.00000      -  10.1  421s
 12126  9573 9360.00000  112  489          - 9360.00000      -  10.2  435s
 12631 10058 9360.00000  235  471          - 9360.00000      -  10.2  448s
 13057 10467 9360.00000  313  509          - 9360.00000      -  10.3  461s
 13442 10831 9360.00000  361  428          - 9360.00000      -  10.4  475s
 14060 11357 9360.00000   62  399          - 9360.00000      -  10.3  489s
 14714 11805 9360.00000  149  428          - 9360.00000      -  10.2  502s
 15229 12295 9360.00000  258  458          - 9360.00000      -  10.1  516s
 15794 12838 9360.00000  355  420          - 9360.00000      -  10.1  530s
 16395 13384 infeasible  434               - 9360.00000      -  10.0  542s
 16849 13726 9360.00000  124  497          - 9360.00000      -  10.1  555s
 17364 14277 9360.00000  233  457          - 9360.00000      -  10.0  568s
 17855 14758 9360.00000  327  432          - 9360.00000      -  10.0  582s
 18446 15223 9360.00000   62  403          - 9360.00000      -   9.9  595s
 19030 15662 9360.00000  152  434          - 9360.00000      -   9.9  608s
 19502 16142 9360.00000  239  453          - 9360.00000      -   9.8  620s
 20069 16702 9360.00000  355  432          - 9360.00000      -   9.8  633s
 20643 17143 9360.06655  434  415          - 9360.00000      -   9.7  646s
 21219 17545 9360.00000   89  493          - 9360.00000      -   9.7  658s
 21694 17994 9360.00000  183  526          - 9360.00000      -   9.7  671s
 22237 18517 9360.00000  302  462          - 9360.00000      -   9.6  683s
 22822 18976 infeasible  383               - 9360.00000      -   9.5  695s
 23246 19366 9360.00000  117  503          - 9360.00000      -   9.6  707s
 23765 19879 9360.00000  212  484          - 9360.00000      -   9.5  720s
 24139 20275 9360.00000  283  415          - 9360.00000      -   9.6  732s
 24747 20695 infeasible  330               - 9360.00000      -   9.5  743s
 25278 21165 9360.00000   90  434          - 9360.00000      -   9.5  755s
 25714 21591 9360.00000  173  462          - 9360.00000      -   9.5  767s
 26243 22075 9360.00000  296  396          - 9360.00000      -   9.4  779s
 26830 22569 9360.00000   96  413          - 9360.00000      -   9.4  791s
 27303 22968 9360.00000  188  438          - 9360.00000      -   9.4  802s
 27692 23352 9360.00000  287  440          - 9360.00000      -   9.4  815s
 28208 23839 9360.00000   50  370          - 9360.00000      -   9.4  826s
 28753 24256 9360.00000  131  464          - 9360.00000      -   9.4  838s
 29199 24630 9360.00000   71  408          - 9360.00000      -   9.4  850s
 29586 25000 9360.00000  157  475          - 9360.00000      -   9.4  862s
 30104 25497 9360.00000  247  428          - 9360.00000      -   9.3  874s
 30660 25890 9600.00000  302  375          - 9360.00000      -   9.3  886s
 30986 26191 9600.00000  309  399          - 9360.00000      -   9.5  899s
 31374 26569 9600.00000  324  314          - 9360.00000      -   9.5  911s
 31748 26902 9600.00000  324  346          - 9360.00000      -   9.5  923s
 32341 27292 9360.00000   80  495          - 9360.00000      -   9.4  934s
 32762 27690 9360.00000  159  528          - 9360.00000      -   9.5  947s
 33288 28176 9360.00000  283  472          - 9360.00000      -   9.4  959s
 33816 28698 infeasible  375               - 9360.00000      -   9.4  971s
 34019 28872 9360.00000  382  355          - 9360.00000      -   9.5  982s
 34249 29030 9360.00000  384  340          - 9360.00000      -   9.6  994s
 34477 29168 9420.00000  407  370          - 9360.00000      -   9.7 1006s
 34799 29473 infeasible  419               - 9360.00000      -   9.7 1018s
 35163 29804 9360.00000   89  435          - 9360.00000      -   9.7 1031s
 35749 30322 9360.00000  198  452          - 9360.00000      -   9.7 1044s
 36357 30790 infeasible  295               - 9360.00000      -   9.6 1057s
 36844 31266 9360.00000  147  473          - 9360.00000      -   9.6 1070s
 37359 31755 9360.00000  226  463          - 9360.00000      -   9.6 1082s
 37761 32178 9360.00000  328  494          - 9360.00000      -   9.6 1096s
 38309 32576 9362.39601  376  479          - 9360.00000      -   9.6 1108s
 38922 33011 infeasible  402               - 9360.00000      -   9.6 1120s
 39313 33349 9360.00000  123  434          - 9360.00000      -   9.6 1132s
 39891 33867 9360.00000  245  461          - 9360.00000      -   9.6 1145s
 40260 34232 9360.00000  321  487          - 9360.00000      -   9.6 1157s
 40817 34704 9360.00000   87  444          - 9360.00000      -   9.6 1169s
 41151 35031 9360.00000  121  521          - 9360.00000      -   9.6 1182s
 41732 35534 9360.00000  231  492          - 9360.00000      -   9.6 1196s
 42304 35973 infeasible  321               - 9360.00000      -   9.6 1200s

Explored 42427 nodes (435518 simplex iterations) in 1200.24 seconds
Thread count was 8 (of 8 available processors)

Solution count 0

update: even with a very small problem and continuous variables instead of integer variables,(469 binary and 15 continuous variables ), gurobi stuck in searching for feasible solutions. I think there must be something to do inorder to prevent this problem and make gurobi converge! the log for small problem:

Academic license - for non-commercial use only
Optimize a model with 2342 rows, 1206 columns and 8898 nonzeros
Variable types: 15 continuous, 1191 integer (1191 binary)
Coefficient statistics:
  Matrix range     [1e+00, 1e+05]
  Objective range  [1e+00, 8e+02]
  Bounds range     [1e+00, 2e+01]
  RHS range        [1e+00, 3e+05]
Presolve removed 849 rows and 722 columns
Presolve time: 0.01s
Presolved: 1493 rows, 484 columns, 6414 nonzeros
Variable types: 15 continuous, 469 integer (469 binary)

Root relaxation: objective 2.160000e+03, 168 iterations, 0.00 seconds

    Nodes    |    Current Node    |     Objective Bounds      |     Work
 Expl Unexpl |  Obj  Depth IntInf | Incumbent    BestBd   Gap | It/Node Time

     0     0 2160.00000    0   19          - 2160.00000      -     -    0s
     0     0 2160.00000    0   44          - 2160.00000      -     -    0s
     0     0 2160.00000    0   57          - 2160.00000      -     -    0s
     0     0 2160.00000    0   46          - 2160.00000      -     -    0s
     0     0 2160.00000    0   31          - 2160.00000      -     -    0s
     0     0 2160.00000    0   28          - 2160.00000      -     -    0s
     0     0 2160.00000    0   49          - 2160.00000      -     -    0s
     0     0 2160.00000    0   42          - 2160.00000      -     -    0s
     0     0 2160.00000    0   59          - 2160.00000      -     -    0s
     0     0 2160.00000    0   41          - 2160.00000      -     -    0s
     0     2 2160.00000    0   41          - 2160.00000      -     -    0s
 10135  1630 2160.00000   36   12          - 2160.00000      -   8.7    5s
 22631  2543 infeasible   40               - 2160.00000      -  12.8   10s
 34157  2675 2160.00000   40   43          - 2160.00000      -  14.5   15s
 47547  2906 infeasible   43               - 2160.00000      -  15.1   20s
 61008  3057 2160.00000   36   30          - 2160.00000      -  15.3   25s
 70483  3488 2160.00000   42   20          - 2160.00000      -  15.7   30s
 81159  4625 2160.00000   34   23          - 2160.00000      -  15.8   35s
 94894  6051 infeasible   43               - 2160.00000      -  16.0   40s
 106278  6567 2160.00000   47   32          - 2160.00000      -  16.1   45s
 118415  7154 2160.00000   40    9          - 2160.00000      -  16.4   50s
 130278  7148 2160.00000   40   14          - 2160.00000      -  16.7   55s
 141753  8045 2160.00000   38   21          - 2160.00000      -  16.8   60s
 153321  8861 2160.00000   37   17          - 2160.00000      -  17.0   65s
 163315  9327 infeasible   37               - 2160.00000      -  17.2   70s
 174712  9284 2160.00000   43   22          - 2160.00000      -  17.4   75s
 186989  9750 2160.00000   40   14          - 2160.00000      -  17.3   80s
 199567  9980 2160.00000   47   17          - 2160.00000      -  17.3   85s
 213163 10894 2160.00000   41   11          - 2160.00000      -  17.0   90s
 225271 11352 infeasible   34               - 2160.00000      -  16.9   95s
 237961 11732 2160.00000   45    7          - 2160.00000      -  16.8  100s
 250844 11855 infeasible   46               - 2160.00000      -  16.7  105s
 265028 13816 infeasible   51               - 2160.00000      -  16.8  110s
 278712 14912 2160.00000   41   14          - 2160.00000      -  16.8  115s
 290532 15964 2160.00000   43   27          - 2160.00000      -  16.8  120s
 302974 17402 infeasible   44               - 2160.00000      -  16.8  125s
 315002 18302 infeasible   42               - 2160.00000      -  16.8  130s
 327409 19249 2160.00000   37   23          - 2160.00000      -  16.8  135s
 339414 20128 2160.00000   50   16          - 2160.00000      -  16.8  140s
 352135 20727 infeasible   45               - 2160.00000      -  16.8  145s
 367381 21309 2160.00000   38   13          - 2160.00000      -  16.8  150s


7660856 348402 infeasible   49               - 2160.00000      -  15.9 3205s
 7672378 348678 2160.00000   33   21          - 2160.00000      -  15.9 3210s
 7685454 348828 2160.00000   37   18          - 2160.00000      -  15.9 3215s
 7697794 348947 2160.00000   49    2          - 2160.00000      -  15.9 3220s
 7707262 349326 2160.92308   40   31          - 2160.00000      -  15.9 3225s
 7718583 349877 infeasible   40               - 2160.00000      -  15.9 3230s
 7729574 350121 infeasible   40               - 2160.00000      -  15.9 3235s
 7741901 350412 infeasible   44               - 2160.00000      -  15.9 3240s
 7751253 350381 2160.00000   49   32          - 2160.00000      -  15.9 3245s
 7763103 350489 2160.00000   37   26          - 2160.00000      -  15.9 3250s
 7773839 350681 2160.00000   38   27          - 2160.00000      -  15.9 3255s
 7786222 351217 infeasible   45               - 2160.00000      -  15.9 3260s
 7797384 351803 infeasible   46               - 2160.00000      -  15.9 3265s
 7808953 352474 2160.00000   51   12          - 2160.00000      -  15.9 3270s
 7820291 353040 2160.00000   49    8          - 2160.00000      -  15.8 3275s
 7831847 353412 2160.00000   54    2          - 2160.00000      -  15.8 3280s
 7842631 354132 infeasible   50               - 2160.00000      -  15.8 3285s
 7852436 354657 infeasible   47               - 2160.00000      -  15.8 3290s
 7861503 354637 2160.00000   39   24          - 2160.00000      -  15.8 3295s
 7874356 354907 2160.00000   41    9          - 2160.00000      -  15.8 3300s

Interrupt request received

Cutting planes:
  Learned: 7
  Gomory: 11
  Cover: 18
  Implied bound: 2
  Clique: 10
  MIR: 99
  StrongCG: 6
  Flow cover: 243
  Inf proof: 6

Explored 7885073 nodes (124881023 simplex iterations) in 3303.69 seconds
Thread count was 8 (of 8 available processors)

Solution count 0

Solve interrupted
Best objective -, best bound 2.159999999845e+03, gap -
A.A
  • 113
  • 5
  • It does not even find a feasible solution. May be the model is infeasible. – Erwin Kalvelagen Jan 11 '19 at 23:06
  • No, As you see, even for the small problem, gurobi does not say "model is infeasible". And when I increase the valid range for integer variables, it converges in a short time. – A.A Jan 12 '19 at 14:07

1 Answers1

1

Have you tried to to turn off the presolve? set presolve to 2 and try. Sometimes the presolve step prunes some feasible region in order to thighten the formulation and as consequence only a few feasible solutions remain in the model.

In many instances turning off the presolver helps.

Bests