I have dropout layers in my model so I want keras to figure out the training and test phases to run or ignore the dropout layers, and I found that K.set_learning_phase can do me this favor but how can I add it to training and test processes? My code is like this:
def discriminator(self):
x_A = Input(shape=self.shape)
x_B = Input(shape=self.shape)
x = concatenate([x_A, x_B], axis=-1)
self.model = Sequential()
self.model.add(Dropout(0.5, input_shape=self.shape_double))
self.model.add(LSTM(200, return_sequences=True, kernel_constraint=unit_norm()))
self.model.add(Dropout(0.5))
self.model.add(LSTM(200, return_sequences=True, kernel_constraint=unit_norm()))
self.model.add(Dropout(0.5))
self.model.add(Flatten())
self.model.add(Dense(8, activation="softmax", kernel_constraint=unit_norm())
label=self.model(x)
return Model([x_A,x_B], label)
...
def train(self, epoch, batch_size):
for epoch in range(epochs):
for batch,train_A,train_B,train_label in enumerate(Load_train(batch_size)):
Dloss = self.discriminator.train_on_batch([train_A,train_B],train_label)
...
def test(self,test_A,test_B,test_label):
predicted_label_dist = self.discriminator.predict([test_A,test_B])
...
Any suggestions will be appreciated. Thanks.