I am using sympy to solve some equations and I am running into a problem. I have this issue with many equations but I will illustrate with an example. I have an equation with multiple variables and I want to solve this equation in terms of all variables but one is excluded. For instance the equation 0 = 2^n*(2-a) - b + 1
. Here there are three variables a
, b
and n
. I want to get the values for a
and b
not in terms of n
so the a
and b
may not contain n
.
2^n*(2-a) - b + 1 = 0
# Since we don't want to solve in terms of n we know that (2 - a)
# has to be zero and -b + 1 has to be zero.
2 - a = 0
a = 2
-b + 1 = 0
b = 1
I want sympy to do this. Maybe I'm just not looking at the right documentation but I have found no way to do this. When I use solve and instruct it to solve for symbols a
and b
sympy returns to me a single solution where a
is defined in terms of n
and b
. I assume this means I am free to choose b
and n
, However I don't want to fix n
to a specific value I want n
to still be a variable.
Code:
import sympy
n = sympy.var("n", integer = True)
a = sympy.var("a")
b = sympy.var("b")
f = 2**n*(2-a) - b + 1
solutions = sympy.solve(f, [a,b], dict = True)
# this will return: "[{a: 2**(-n)*(2**(n + 1) - b + 1)}]".
# A single solution where b and n are free variables.
# However this means I have to choose an n I don't want
# to that I want it to hold for any n.
I really hope someone can help me. I have been searching google for hours now...