I am trying to calculate the pose of image Y, given image X. Image Y is the same as image X rotated 90ยบ degrees.
1 -So, for starters i find the matches between both images.
2 -Then i store all the good matches.
3 -The homography between the the matches from both images is calculated using cv2.RANSAC
.
4 -Then for the X image, i transform the 2d matching points into 3d, adding 0 as the Z axis.
5 -Object points contain all points from matches of original image, while image points contain matches from the training image. Both array of points are filtered using the mask returned by homography.
6 -After that, i use cv2.calibrateCamera
with these object points and image points.
7 -Finnaly i use cv2.projectPoints
to get the projections of the axis
I know with that until step 5, the results are correct because i use cv2.drawMatches
to see the matches. However this may not be the way to get what i want to achieve.
matches = flann.knnMatch(query_image.descriptors, descriptors, k=2)
good = []
for m, n in matches:
if m.distance < 0.70 * n.distance:
good.append(m)
current_good = good
src_pts = np.float32([selected_image.keypoints[m.queryIdx].pt for m in current_good]).reshape(-1, 1, 2)
dst_pts = np.float32([keypoints[m.trainIdx].pt for m in current_good]).reshape(-1, 1, 2)
homography, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
test = np.zeros(((mask.ravel() > 0).sum(), 3),np.float32) #obj points
test1 = np.zeros(((mask.ravel() > 0).sum(), 2), np.float32) #img points
i=0
counter=0
for m in current_good:
if mask.ravel()[i] == 1:
test[counter][0] = selected_image.keypoints[m.queryIdx].pt[0]
test[counter][1] = selected_image.keypoints[m.queryIdx].pt[1]
test1[counter][0] = selected_image.keypoints[m.trainIdx].pt[0]
test1[counter][1] = selected_image.keypoints[m.trainIdx].pt[1]
counter+=1
i+=1
gray = cv2.cvtColor(self.train_image, cv2.COLOR_BGR2GRAY)
gray = np.float32(gray)
#here start my doubts about what i want to do and if it is possible to do it this way
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera([test], [test1], gray.shape[::-1], None, None)
axis = np.float32([[3, 0, 0], [0, 3, 0], [0, 0, -3]]).reshape(-1, 3)
rvecs = np.array(rvecs, np.float32)
tvecs = np.array(tvecs, np.float32)
imgpts, jac = cv2.projectPoints(axis, rvecs, tvecs, mtx, dist)
However after all this, imgpts returned by cv2.projectPoints
give results that don't make much sense to me, like :
[[[857.3185 109.317406]]
[[857.2196 108.360954]]
[[857.2846 107.579605]]]
I would like to have a normal to my image like it is shown here https://docs.opencv.org/trunk/d7/d53/tutorial_py_pose.html and i successfully got it to work using the chessboard image. But trying to adapt to a general image is giving me strange results.