Let's work with this data sample
timeseries<-structure(list(Data = structure(c(10L, 14L, 18L, 22L, 26L, 29L,
32L, 35L, 38L, 1L, 4L, 7L, 11L, 15L, 19L, 23L, 27L, 30L, 33L,
36L, 39L, 2L, 5L, 8L, 12L, 16L, 20L, 24L, 28L, 31L, 34L, 37L,
40L, 3L, 6L, 9L, 13L, 17L, 21L, 25L), .Label = c("01.01.2018",
"01.01.2019", "01.01.2020", "01.02.2018", "01.02.2019", "01.02.2020",
"01.03.2018", "01.03.2019", "01.03.2020", "01.04.2017", "01.04.2018",
"01.04.2019", "01.04.2020", "01.05.2017", "01.05.2018", "01.05.2019",
"01.05.2020", "01.06.2017", "01.06.2018", "01.06.2019", "01.06.2020",
"01.07.2017", "01.07.2018", "01.07.2019", "01.07.2020", "01.08.2017",
"01.08.2018", "01.08.2019", "01.09.2017", "01.09.2018", "01.09.2019",
"01.10.2017", "01.10.2018", "01.10.2019", "01.11.2017", "01.11.2018",
"01.11.2019", "01.12.2017", "01.12.2018", "01.12.2019"), class = "factor"),
client = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L), .Label = c("Horns", "Kornev"), class = "factor"), stuff = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("chickens",
"hooves", "Oysters"), class = "factor"), Sales = c(374L,
12L, 120L, 242L, 227L, 268L, 280L, 419L, 12L, 172L, 336L,
117L, 108L, 150L, 90L, 117L, 116L, 146L, 120L, 211L, 213L,
67L, 146L, 118L, 152L, 122L, 201L, 497L, 522L, 65L, 268L,
441L, 247L, 348L, 445L, 477L, 62L, 226L, 476L, 306L)), .Names = c("Data",
"client", "stuff", "Sales"), class = "data.frame", row.names = c(NA,
-40L))
I want to perform forecast using auto.arima by group
# first the grouping variable
timeseries$group <- paste0(timeseries$client,timeseries$stuff)
# now the list
listed <- split(timeseries,timeseries$group)
library("forecast")
library("lubridate")
listed_ts <- lapply(listed,
function(x) ts(x[["Sales"]], start = ymd("2017-01-04"), frequency = 12) )
listed_ts
listed_arima <- lapply(listed_ts,function(x) auto.arima(x) )
#Now the forecast for each arima:
listed_forecast <- lapply(listed_arima,function(x) forecast(x,2) )
listed_forecast
do.call(rbind,listed_forecast)
and after listed_forecast
i get the next output
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov
17170 374 12 120 242 227 268 280 419 12 172 336
$Hornshooves
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
17170 497 522 65 268 441 247 348 445 477 62 226 476
17171 306
$KornevOysters
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
17170 117 108 150 90 117 116 146 120 211 213 67 146
17171 118 152 122 201
17170 is not correct date format
So as.numeric(ymd("2017-01-04"))
shows us 17170
How to get output with correct date format? i want like this with normal date format
$Hornschickens
Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
Dec 2017 223.8182 50.98365 396.6527 -40.50942 488.1458
Jan 2018 223.8182 50.98365 396.6527 -40.50942 488.1458
So i suppose that 17170 in forecast mean 2017,17171=2018 But any trouble to convert it in reading format
i see next logic Is it possible to do automatic conversion of these numeric values to dates
where
1970-01-01 (Y-m-d) is 0
1970-01-02 is 1
"2018-12-25" is 17890
but when aggregated by month input data like in my example
dec 17890 so simple convert to dec 2018 cause 17890 in the range of December 2018.