I've a Python code which performs FFT on a wav file and plot the amplitude vs time / amplitude vs freq graphs. I want to calculate dB from these graphs (they are long arrays). I do not want to calculate exact dBA, I just want to see a linear relationship after my calculations. I've dB meter, I will compare it. Here is my code:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import print_function
import scipy.io.wavfile as wavfile
import scipy
import scipy.fftpack
import numpy as np
from matplotlib import pyplot as plt
fs_rate, signal = wavfile.read("output.wav")
print ("Frequency sampling", fs_rate)
l_audio = len(signal.shape)
print ("Channels", l_audio)
if l_audio == 2:
signal = signal.sum(axis=1) / 2
N = signal.shape[0]
print ("Complete Samplings N", N)
secs = N / float(fs_rate)
print ("secs", secs)
Ts = 1.0/fs_rate # sampling interval in time
print ("Timestep between samples Ts", Ts)
t = scipy.arange(0, secs, Ts) # time vector as scipy arange field / numpy.ndarray
FFT = abs(scipy.fft(signal))
FFT_side = FFT[range(N//4)] # one side FFT range
freqs = scipy.fftpack.fftfreq(signal.size, t[1]-t[0])
fft_freqs = np.array(freqs)
freqs_side = freqs[range(N//4)] # one side frequency range
fft_freqs_side = np.array(freqs_side)
makespositive = signal[44100:]*(-1)
logal = np.log10(makespositive)
sn1 = np.mean(logal[1:44100])
sn2 = np.mean(logal[44100:88200])
sn3 = np.mean(logal[88200:132300])
sn4 = np.mean(logal[132300:176400])
print(sn1)
print(sn2)
print(sn3)
print(sn4)
abs(FFT_side)
for a in range(500):
FFT_side[a] = 0
plt.subplot(311)
p1 = plt.plot(t[44100:], signal[44100:], "g") # plotting the signal
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.subplot(312)
p1 = plt.plot(t[44100:], logal, "r") # plotting the signal
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.subplot(313)
p3 = plt.plot(freqs_side, abs(FFT_side), "b") # plotting the positive fft spectrum
plt.xlabel('Frequency (Hz)')
plt.ylabel('Count single-sided')
plt.show()
First plot is amplitude vs time, second one is logarithm of previous graph and the last one is FFT. In sn1,sn2 part I tried to calculate dB from signal. First I took log and then calculated mean value for each second. It did not give me a clear relationship. I also tried this and did not worked.
import numpy as np
import matplotlib.pyplot as plt
import scipy.io.wavfile as wf
fs, signal = wf.read('output.wav') # Load the file
ref = 32768 # 0 dBFS is 32678 with an int16 signal
N = 8192
win = np.hamming(N)
x = signal[0:N] * win # Take a slice and multiply by a window
sp = np.fft.rfft(x) # Calculate real FFT
s_mag = np.abs(sp) * 2 / np.sum(win) # Scale the magnitude of FFT by window and factor of 2,
# because we are using half of FFT spectrum
s_dbfs = 20 * np.log10(s_mag / ref) # Convert to dBFS
freq = np.arange((N / 2) + 1) / (float(N) / fs) # Frequency axis
plt.plot(freq, s_dbfs)
plt.grid(True)
So which steps should I perform? (Sum/mean all freq amplitudes then take log or reverse, or perform it for signal etc.)
import numpy as np
import matplotlib.pyplot as plt
import scipy.io.wavfile as wf
fs, signal = wf.read('db1.wav')
signal2 = signal[44100:]
chunk_size = 44100
num_chunk = len(signal2) // chunk_size
sn = []
for chunk in range(0, num_chunk):
sn.append(np.mean(signal2[chunk*chunk_size:(chunk+1)*chunk_size].astype(float)**2))
print(sn)
logsn = 20*np.log10(sn)
print(logsn)
Output:
[4.6057844427695475e+17, 5.0025315250895744e+17, 5.028593412665193e+17, 4.910948397471887e+17]
[353.26607217 353.98379668 354.02893044 353.82330741]