I am completely baffled with the following problem:
When I join 2 data frames and return the row count, I get a slightly different count on each try. Here are the details:
I would like to join the data frames: 'df_user_ids' and 'df_conversions':
df_user_ids.show()
>>>
+--------------------+
| user_id|
+--------------------+
|AMsySZY-cqcufnXst...|
|AMsySZY1Oo75A6vKU...|
|AMsySZY4nbqZiuEMR...|
|AMsySZY5RSfgj6Xvi...|
|AMsySZY5geAmTx0er...|
|AMsySZY6Gskv_kEAv...|
|AMsySZY6MIOyPWM4U...|
|AMsySZYCEZYS00UB9...|
df_conversions.show()
>>>
+--------------------+----------------------+---------+
| user_id|time_activity_observed|converted|
+--------------------+----------------------+---------+
|CAESEAl1YPOZpaWVx...| 2018-03-23 12:15:37| 1|
|CAESEAuvSBzmfc_f3...| 2018-03-23 21:58:25| 1|
|CAESEBXWsSYm4ntvR...| 2018-03-30 12:16:53| 1|
|CAESEC-5uPwWGFdnv...| 2018-03-23 08:52:48| 1|
|CAESEDB3Z-NNvz7zL...| 2018-03-24 21:37:05| 1|
|CAESEDu7S7rGTVlj2...| 2018-04-01 17:00:12| 1|
|CAESEE4s6g1-JlUEt...| 2018-03-23 19:32:23| 1|
|CAESEELlJt0mE2xjn...| 2018-03-24 18:26:15| 1|
Both data frames have the key column named: "user_id", and both are created using ".sampleBy()" with a fixed seed:
.sampleBy("converted", fractions={0: 0.035, 1: 1}, seed=0)
Before I join the data frames I persist them to disk:
df_user_ids.persist(StorageLevel.DISK_ONLY)
df_conversions.persist(StorageLevel.DISK_ONLY)
Then I verify that the row count of both data frames is consistent:
df_user_ids.count()
>>> 584309
df_user_ids.count()
>>> 584309
df_conversions.count()
>>> 5830
df_conversions.count()
>>> 5830
And check that the key column of both data frames does not contain duplicates:
df_user_ids.count()
>>> 584309
df_user_ids.select('user_id').distinct().count()
>>> 584309
df_conversions.count()
>>> 5830
df_conversions.select('user_id').distinct().count()
>>> 5830
Then I get the inconsistent row counts when I join them!
df_user_ids.join(df_conversions, ["user_id"], "left").count()
>>> 584314
df_user_ids.join(df_conversions, ["user_id"], "left").count()
>>> 584317
df_user_ids.join(df_conversions, ["user_id"], "left").count()
>>> 584304
How is this possible??
Sometimes this joined count is higher than "df_user_ids.count()" and sometimes it is lower. I am using a Zeppelin notebook in AWS EMR on an EMR cluster to run this code.
I already tried what is suggested in the link below:
- ".persist(StorageLevel.DISK_ONLY)" doesn't help.
- I don't use monotonically_increasing_id.