I came across a peculiar behaviour of functools.update_wrapper
: it overwrites the __dict__
of the wrapper object by that of the wrapped object - which may hinder its use when nesting decorators.
As a simple example, assume that we are writing a decorator class that caches data in memory and another decorator class that caches data to a file. The following example demonstrates this (I made the example brief and omitted all cacheing logic, but I hope that it demonstrates the question):
import functools
class cached:
cache_type = 'memory'
def __init__(self, fcn):
super().__init__()
self.fcn = fcn
functools.update_wrapper(self, fcn, updated=())
def __call__(self, *args):
print("Retrieving from", type(self).cache_type)
return self.fcn(*args)
class diskcached(cached):
cache_type = 'disk'
@cached
@diskcached
def expensive_function(what):
print("expensive_function working on", what)
expensive_function("Expensive Calculation")
This example works as intended - its output is
Retrieving from memory
Retrieving from disk
expensive_function working on Expensive Calculation
However, it took me long to make this work - at first, I hat not included the 'updated=()' argument in the functools.update_wrapper call. But when this is left out, then nesting the decorators does not work - in this case, the output is
Retrieving from memory
expensive_function working on Expensive Calculation
I.e. the outer decorator directly calls the innermost wrapped function. The reason (which took me a while to understand) for this is that functools.update_wrapper
updates the __dict__
attribute of the wrapper to the __dict__
attribute of the wrapped argument - which short-circuits the inner decorator, unless one adds the updated=()
argument.
My question: is this behaviour intended - and why? (Python 3.7.1)