I have two matrices R and F
R = array([[ 0.89148867, 4.58007519, 15.70287019],
[ 5.1065172 , 14.26381865, 34.50113854],
[18.51056089, 36.78238723, 72.21058193]])
F = array([[ 4.9348022, 12.3370055, 24.674011 ],
[12.3370055, 19.7392088, 32.0762143],
[24.674011 , 32.0762143, 44.4132198]])
If I try to solve the generalized eigenvalue problem I get
#[R]{c}=e[F]{c}
eigvals,eigvecs = scipy.linalg.eig(R,b=F)
eigvals =
array([[inf+0.j],
[1.0583253e+14+0.j],
[ inf+0.j]])
But if I first turn it into a standard eigenvalue problem I get
#inv([F])[R]{c}=e[I]{c}
mat = scipy.linalg.inv(F) @ R
eigvals,eigvecs = scipy.linalg.eig(mat)
eigvals =
array([[-5.06390561e+07+0.j],
[ 5.06390548e+07+0.j],
[ 2.91609260e-01+0.j]])
Why is that happening? Should they not give the same solutions?