Following the same steps in CUDA samples to launch a kernel and sync across the grid using cooperative_groups::this_grid().sync()
causes any CUDA API call to fails. While using
cooperative_groups::this_thread_block().sync()
works fine and gives correct results.
I used the following code and CMakeLists.txt
(cmake version 3.11.1) to test it using CUDA 10 on TITAN V GPU (Driver Version 410.73) with Ubuntu 16.04.5 LTS. The code is also available on github in order to make it easy to reproduce the error.
The code reads an array and then reverses it (from [0 1 2 ... 9]
to [9 8 7 ... 0]
). In order to do this, each thread reads a single element from the array, sync, and then writes its element to the right destination. The code can be easily modified to ensure that this_thread_block().sync()
works fine. Simply change arr_size
to be less 1024 and use cg::thread_block barrier = cg::this_thread_block();
instead.
test_cg.cu
#include <cuda_runtime_api.h>
#include <stdio.h>
#include <stdint.h>
#include <cstdint>
#include <numeric>
#include <cuda.h>
#include <cooperative_groups.h>
namespace cg = cooperative_groups;
//********************** CUDA_ERROR
inline void HandleError(cudaError_t err, const char *file, int line) {
//Error handling micro, wrap it around function whenever possible
if (err != cudaSuccess) {
printf("\n%s in %s at line %d\n", cudaGetErrorString(err), file, line);
#ifdef _WIN32
system("pause");
#else
exit(EXIT_FAILURE);
#endif
}
}
#define CUDA_ERROR( err ) (HandleError( err, __FILE__, __LINE__ ))
//******************************************************************************
//********************** cg kernel
__global__ void testing_cg_grid_sync(const uint32_t num_elements,
uint32_t *d_arr){
uint32_t tid = threadIdx.x + blockDim.x*blockIdx.x;
if (tid < num_elements){
uint32_t my_element = d_arr[tid];
//to sync across the whole grid
cg::grid_group barrier = cg::this_grid();
//to sync within a single block
//cg::thread_block barrier = cg::this_thread_block();
//wait for all reads
barrier.sync();
uint32_t tar_id = num_elements - tid - 1;
d_arr[tar_id] = my_element;
}
}
//******************************************************************************
//********************** execute
void execute_test(const int sm_count){
//host array
const uint32_t arr_size = 1 << 20; //1M
uint32_t* h_arr = (uint32_t*)malloc(arr_size * sizeof(uint32_t));
//fill with sequential numbers
std::iota(h_arr, h_arr + arr_size, 0);
//device array
uint32_t* d_arr;
CUDA_ERROR(cudaMalloc((void**)&d_arr, arr_size*sizeof(uint32_t)));
CUDA_ERROR(cudaMemcpy(d_arr, h_arr, arr_size*sizeof(uint32_t),
cudaMemcpyHostToDevice));
//launch config
const int threads = 512;
//following the same steps done in conjugateGradientMultiBlockCG.cu
//cuda sample to launch kernel that sync across grid
//https://github.com/NVIDIA/cuda-samples/blob/master/Samples/conjugateGradientMultiBlockCG/conjugateGradientMultiBlockCG.cu#L436
int num_blocks_per_sm = 0;
CUDA_ERROR(cudaOccupancyMaxActiveBlocksPerMultiprocessor(&num_blocks_per_sm,
(void*)testing_cg_grid_sync, threads, 0));
dim3 grid_dim(sm_count * num_blocks_per_sm, 1, 1), block_dim(threads, 1, 1);
if(arr_size > grid_dim.x*block_dim.x){
printf("\n The grid size (numBlocks*numThreads) is less than array size.\n");
exit(EXIT_FAILURE);
}
printf("\n Launching %d blocks, each containing %d threads", grid_dim.x,
block_dim.x);
//argument passed to the kernel
void *kernel_args[] = {
(void *)&arr_size,
(void *)&d_arr, };
//finally launch the kernel
cudaLaunchCooperativeKernel((void*)testing_cg_grid_sync,
grid_dim, block_dim, kernel_args);
//make sure everything went okay
CUDA_ERROR(cudaGetLastError());
CUDA_ERROR(cudaDeviceSynchronize());
//get results on the host
CUDA_ERROR(cudaMemcpy(h_arr, d_arr, arr_size*sizeof(uint32_t),
cudaMemcpyDeviceToHost));
//validate
for (uint32_t i = 0; i < arr_size; i++){
if (h_arr[i] != arr_size - i - 1){
printf("\n Result mismatch in h_arr[%u] = %u\n", i, h_arr[i]);
exit(EXIT_FAILURE);
}
}
}
//******************************************************************************
int main(int argc, char**argv) {
//set to Titan V
uint32_t device_id = 0;
cudaSetDevice(device_id);
//get sm count
cudaDeviceProp devProp;
CUDA_ERROR(cudaGetDeviceProperties(&devProp, device_id));
int sm_count = devProp.multiProcessorCount;
//execute
execute_test(sm_count);
printf("\n Mission accomplished \n");
return 0;
}
CMakeLists.txt
cmake_minimum_required(VERSION 3.8 FATAL_ERROR)
set(PROJECT_NAME "test_cg")
project(${PROJECT_NAME} LANGUAGES CXX CUDA)
#default build type is Release
if (CMAKE_BUILD_TYPE STREQUAL "")
set(CMAKE_BUILD_TYPE Release)
endif ()
SET(CUDA_SEPARABLE_COMPILATION ON)
########## Libraries/flags Starts Here ######################
find_package(CUDA REQUIRED)
include_directories("${CUDA_INCLUDE_DIRS}")
set(CUDA_NVCC_FLAGS ${CUDA_NVCC_FLAGS}; -lineinfo; -std=c++11; -expt-extended-lambda; -O3; -use_fast_math; -rdc=true;)
set(CUDA_NVCC_FLAGS ${CUDA_NVCC_FLAGS};-gencode=arch=compute_70,code=sm_70) #for TITAN V
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS}")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -m64 -Wall -std=c++11")
########## Libraries/flags Ends Here ######################
########## inc/libs/exe/features Starts Here ######################
set(CMAKE_INCLUDE_CURRENT_DIR ON)
CUDA_ADD_EXECUTABLE(${PROJECT_NAME} test_cg.cu)
target_compile_features(${PROJECT_NAME} PUBLIC cxx_std_11)
set_target_properties(${PROJECT_NAME} PROPERTIES POSITION_INDEPENDENT_CODE ON)
set_target_properties(${PROJECT_NAME} PROPERTIES CUDA_SEPARABLE_COMPILATION ON)
target_link_libraries(${PROJECT_NAME} ${CUDA_LIBRARIES} ${CUDA_cudadevrt_LIBRARY})
########## inc/libs/exe/features Ends Here ######################
Running this code gives:
unknown error in /home/ahdhn/test_cg/test_cg.cu at line 67
This is the first line that uses cudaMalloc
. I made sure that the code is compiled for the correct architecture by querying __CUDA_ARCH__
from the device and the results is 700. Kindly let me know if you spot me doing something wrong in the code or the CMakeLists.txt
file.