1

I have a dataframe with an index of dates. Each data is the first of the month. I want to fill in all missing dates in the index at a daily level.

I thought this should work:

daily=pd.date_range('2016-01-01', '2018-01-01', freq='D')
df=df.reindex(daily)

But it's returning NA in rows that should have data in (1st of the month dates) Can anyone see the issue?

pizza lover
  • 503
  • 4
  • 15
fred.schwartz
  • 2,023
  • 4
  • 26
  • 53

1 Answers1

4

Use reindex with parameter method='ffill' or resample with ffill for more general solution, because is not necessary create new index by date_range:

df = pd.DataFrame({'a': range(13)},
                   index=pd.date_range('2016-01-01', '2017-01-01', freq='MS'))

print (df)
             a
2016-01-01   0
2016-02-01   1
2016-03-01   2
2016-04-01   3
2016-05-01   4
2016-06-01   5
2016-07-01   6
2016-08-01   7
2016-09-01   8
2016-10-01   9
2016-11-01  10
2016-12-01  11
2017-01-01  12

daily=pd.date_range('2016-01-01', '2018-01-01', freq='D')
df1 = df.reindex(daily, method='ffill')

Another solution:

df1 = df.resample('D').ffill()  

print (df1.head())
            a
2016-01-01  0
2016-01-02  0
2016-01-03  0
2016-01-04  0
2016-01-05  0
jezrael
  • 822,522
  • 95
  • 1,334
  • 1,252