I'm extracting intermediate layer outputs from pretrained VGG19 ConvNet for a given image. I expect that if I give the same image twice, I should get the same output. But, I'm not getting the same output. Why is this happening and how to fix this?
Additional Details: I'm following this paper. They use a VGG19 ConvNet and extract the features from some intermediate layer (VGG22 means 2nd layer before 2nd convolution) for Super-Resolved Image and Ground-Truth Image. Then they calculate the mean squared error between these 2 feature sets and use it as a loss parameter. Now, my expectation is that if I give Ground Truth Image only twice, the mean squared error should be zero. But it is not happening? I'm getting different feature values at different iteration, but with same image. Also I noticed that, when I run the program again afresh, I get the same set of values. Code below for reference:
import numpy
from keras import backend as K
from keras.applications.vgg19 import VGG19, preprocess_input
from keras.preprocessing.image import img_to_array, load_img
model = VGG19()
vgg22_layer_output = K.function([model.layers[0].input], [model.layers[5].output])
# image_matrix is a 224x224x3 matrix for an RGB-image.
hr_image_obj = load_img(hr_image_path)
hr_image_matrix = img_to_array(hr_image_obj)
cropped_hr_image = hr_image_matrix[0:224, 0:224, :]
expanded_image = numpy.expand_dims(cropped_hr_image, axis=0)
preprocessed_image = preprocess_input(expanded_image)
features1 = vgg22_layer_output ([preprocessed_image])[0]
features2 = vgg22_layer_output ([preprocessed_image])[0]
Here, my expectation is that features1 = features2, which isn't
Results:
features1:
array([[[[2.15184002e+01, 1.81470230e+02, 0.00000000e+00, ...,
0.00000000e+00, 1.98130661e+02, 0.00000000e+00],
[2.27056488e+02, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[1.54923904e+02, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
...,
[2.29082489e+02, 2.58140778e+02, 0.00000000e+00, ...,
3.18900665e+02, 0.00000000e+00, 0.00000000e+00],
[1.58660873e+02, 1.24280603e+03, 0.00000000e+00, ...,
2.76672821e+02, 0.00000000e+00, 0.00000000e+00],
[2.66982513e+02, 4.27661194e+02, 0.00000000e+00, ...,
4.57434418e+02, 0.00000000e+00, 0.00000000e+00]],
[[0.00000000e+00, 0.00000000e+00, 1.71959274e+02, ...,
0.00000000e+00, 1.25863232e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
3.51934662e+02, 4.45714081e+02, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
3.73108368e+02, 7.51479004e+02, 0.00000000e+00],
...,
[0.00000000e+00, 3.06031370e+00, 0.00000000e+00, ...,
3.09630096e+02, 2.15055069e+02, 1.91232590e+02],
[0.00000000e+00, 1.33151245e+03, 0.00000000e+00, ...,
2.78728699e+02, 2.91452618e+01, 4.12124878e+02],
[1.13750778e+02, 3.04266022e+02, 0.00000000e+00, ...,
4.93073273e+02, 0.00000000e+00, 1.25463562e+02]],
[[0.00000000e+00, 2.36886551e+02, 1.87017990e+02, ...,
0.00000000e+00, 5.56484497e+02, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
1.29744125e+02, 5.47009888e+02, 0.00000000e+00],
[2.10977726e+01, 0.00000000e+00, 5.83388855e+02, ...,
3.78568268e+02, 1.76858459e+03, 0.00000000e+00],
...,
[0.00000000e+00, 2.26063950e+02, 0.00000000e+00, ...,
1.74201874e+02, 1.10421577e+02, 2.92625153e+02],
[0.00000000e+00, 1.49054639e+03, 1.73763367e+02, ...,
3.43214760e+01, 1.41045761e+02, 5.26752502e+02],
[1.79130356e+02, 4.18553101e+02, 1.12429085e+02, ...,
2.08473053e+02, 0.00000000e+00, 1.46159897e+02]],
...,
[[0.00000000e+00, 0.00000000e+00, 6.14884460e+02, ...,
4.48683044e+02, 2.60172217e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
1.05306360e+03, 5.45696045e+02, 0.00000000e+00],
[5.33453941e+01, 0.00000000e+00, 6.09368164e+02, ...,
7.00016541e+02, 0.00000000e+00, 0.00000000e+00],
...,
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
2.49793106e+02, 0.00000000e+00, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 3.44778638e+03, ...,
1.97339310e+02, 0.00000000e+00, 0.00000000e+00],
[1.27069351e+02, 0.00000000e+00, 0.00000000e+00, ...,
1.85339737e+02, 0.00000000e+00, 0.00000000e+00]],
[[0.00000000e+00, 0.00000000e+00, 4.90521271e+02, ...,
4.68645844e+02, 3.26934399e+03, 0.00000000e+00],
[2.26508102e+01, 0.00000000e+00, 7.08834915e+01, ...,
1.11953967e+03, 1.10590857e+03, 0.00000000e+00],
[1.11061287e+02, 0.00000000e+00, 8.05527405e+02, ...,
8.03228516e+02, 2.84233459e+02, 0.00000000e+00],
...,
[0.00000000e+00, 0.00000000e+00, 1.10313757e+03, ...,
5.78258667e+02, 1.47924316e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 1.59146082e+03, ...,
7.10267578e+02, 6.43671143e+02, 0.00000000e+00],
[3.27744568e+02, 0.00000000e+00, 0.00000000e+00, ...,
4.53388458e+02, 0.00000000e+00, 0.00000000e+00]],
[[0.00000000e+00, 0.00000000e+00, 1.12306348e+03, ...,
1.63393646e+02, 3.52517969e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 6.36935806e+01, ...,
4.52494598e+02, 1.94326257e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
2.83666046e+02, 4.89346985e+02, 0.00000000e+00],
...,
[0.00000000e+00, 0.00000000e+00, 1.02328314e+03, ...,
2.65413391e+02, 2.64639990e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
4.30894745e+02, 1.33343530e+03, 0.00000000e+00],
[7.57115707e+01, 0.00000000e+00, 0.00000000e+00, ...,
2.14354630e+02, 0.00000000e+00, 0.00000000e+00]]]],
dtype=float32)
features2:
array([[[[2.44103737e+01, 3.35516052e+02, 0.00000000e+00, ...,
0.00000000e+00, 2.06830643e+02, 0.00000000e+00],
[4.71717712e+02, 0.00000000e+00, 0.00000000e+00, ...,
2.63770996e+02, 0.00000000e+00, 0.00000000e+00],
[3.93549591e+02, 0.00000000e+00, 0.00000000e+00, ...,
1.77212814e+02, 0.00000000e+00, 0.00000000e+00],
...,
[5.33919487e+01, 0.00000000e+00, 0.00000000e+00, ...,
1.85940536e+02, 0.00000000e+00, 0.00000000e+00],
[0.00000000e+00, 2.96363708e+02, 0.00000000e+00, ...,
1.09057648e+02, 0.00000000e+00, 0.00000000e+00],
[2.27105503e+01, 8.29022141e+01, 0.00000000e+00, ...,
1.38949188e+02, 0.00000000e+00, 0.00000000e+00]],
[[0.00000000e+00, 0.00000000e+00, 2.47062546e+02, ...,
0.00000000e+00, 1.66465466e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
6.74320862e+02, 4.15592712e+02, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
8.65957825e+02, 8.59399170e+02, 0.00000000e+00],
...,
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
1.66129944e+02, 0.00000000e+00, 0.00000000e+00],
[0.00000000e+00, 2.76259674e+02, 0.00000000e+00, ...,
8.00474930e+01, 0.00000000e+00, 1.08291901e+02],
[0.00000000e+00, 2.20606117e+01, 0.00000000e+00, ...,
1.28005768e+02, 0.00000000e+00, 3.49725151e+01]],
[[0.00000000e+00, 2.14503006e+02, 8.82690811e+01, ...,
0.00000000e+00, 5.60968628e+02, 0.00000000e+00],
[3.28399010e+01, 0.00000000e+00, 0.00000000e+00, ...,
3.34213745e+02, 2.90819824e+02, 0.00000000e+00],
[8.66472626e+01, 0.00000000e+00, 1.10250635e+03, ...,
6.37486572e+02, 1.67822144e+03, 0.00000000e+00],
...,
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
5.90463066e+01, 0.00000000e+00, 9.77452278e+00],
[0.00000000e+00, 3.39350586e+02, 4.62688398e+00, ...,
1.32679808e+00, 0.00000000e+00, 1.65987671e+02],
[2.47563610e+01, 7.48269196e+01, 1.33592939e+01, ...,
6.36582108e+01, 0.00000000e+00, 5.70933228e+01]],
...,
[[0.00000000e+00, 0.00000000e+00, 6.27470215e+02, ...,
2.55267532e+02, 2.27369629e+03, 0.00000000e+00],
[1.52827530e+02, 0.00000000e+00, 0.00000000e+00, ...,
1.20087329e+03, 0.00000000e+00, 0.00000000e+00],
[1.33066071e+02, 0.00000000e+00, 5.95311890e+02, ...,
7.66817871e+02, 0.00000000e+00, 0.00000000e+00],
...,
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
4.81101898e+02, 0.00000000e+00, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 3.99484155e+03, ...,
5.40802429e+02, 0.00000000e+00, 0.00000000e+00],
[1.93494095e+02, 0.00000000e+00, 1.16481377e+02, ...,
3.75594208e+02, 0.00000000e+00, 0.00000000e+00]],
[[0.00000000e+00, 0.00000000e+00, 5.08203369e+02, ...,
3.65947357e+02, 2.66369580e+03, 0.00000000e+00],
[2.29821182e+02, 0.00000000e+00, 3.83578918e+02, ...,
1.37410413e+03, 1.28806320e+02, 0.00000000e+00],
[1.89210968e+02, 0.00000000e+00, 9.40994324e+02, ...,
8.16117615e+02, 0.00000000e+00, 0.00000000e+00],
...,
[0.00000000e+00, 0.00000000e+00, 1.34960962e+03, ...,
1.03916003e+03, 6.58975891e+02, 0.00000000e+00],
[6.77491531e+01, 0.00000000e+00, 2.07465186e+03, ...,
1.13461414e+03, 0.00000000e+00, 0.00000000e+00],
[2.96653259e+02, 0.00000000e+00, 0.00000000e+00, ...,
6.33178528e+02, 0.00000000e+00, 0.00000000e+00]],
[[0.00000000e+00, 0.00000000e+00, 1.20268628e+03, ...,
6.86023560e+01, 2.83282886e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 3.50556335e+02, ...,
8.04942566e+02, 7.94925537e+02, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
3.74615967e+02, 0.00000000e+00, 0.00000000e+00],
...,
[0.00000000e+00, 0.00000000e+00, 1.17975757e+03, ...,
6.35223450e+02, 1.62643567e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
9.20189697e+02, 4.05781097e+02, 0.00000000e+00],
[1.26037315e+02, 0.00000000e+00, 0.00000000e+00, ...,
4.17285614e+02, 0.00000000e+00, 0.00000000e+00]]]],
dtype=float32)
The image is taken from here. Path: v1.3/Code/Ours/Images_GroundTruth/BSD200/335094.png
Edit 1: Added additional code and results