Adding to @rmunn's excellent answer:
if you wanted to test myFunc
(yes I also renamed your list
function) you could do it by creating some fixed cases that you already know the answer to, like:
let myFunc p = if List.contains " " p || List.contains null p then false else true
let tests =
testList "myFunc" [
testCase "empty list" <| fun()-> "empty" |> Expect.isTrue (myFunc [ ])
testCase "nonempty list" <| fun()-> "hi" |> Expect.isTrue (myFunc [ "hi" ])
testCase "null case" <| fun()-> "null" |> Expect.isFalse (myFunc [ null ])
testCase "empty string" <| fun()-> "\"\"" |> Expect.isFalse (myFunc [ "" ])
]
Tests.runTests config tests
Here I am using a testing library called Expecto
.
If you run this you would see one of the tests fails:
Failed! myFunc/empty string:
"". Actual value was true but had expected it to be false.
because your original function has a bug; it checks for space " "
instead of empty string ""
.
After you fix it all tests pass:
4 tests run in 00:00:00.0105346 for myFunc – 4 passed, 0 ignored, 0
failed, 0 errored. Success!
At this point you checked only 4 simple and obvious cases with zero or one element each. Many times functions fail when fed more complex data. The problem is how many more test cases can you add? The possibilities are literally infinite!
FsCheck
This is where FsCheck can help you. With FsCheck you can check for properties (or rules) that should always be true. It takes a little bit of creativity to think of good ones to test for and granted, sometimes it is not easy.
In your case we can test for concatenation. The rule would be like this:
- If two lists are concatenated the result of
MyFunc
applied to the concatenation should be true
if both lists are well formed and false
if any of them is malformed.
You can express that as a function this way:
let myFuncConcatenation l1 l2 = myFunc (l1 @ l2) = (myFunc l1 && myFunc l2)
l1 @ l2
is the concatenation of both lists.
Now if you call FsCheck:
FsCheck.Verbose myFuncConcatenation
It tries a 100 different combinations trying to make it fail but in the end it gives you the Ok:
0:
["X"]
["^"; ""]
1:
["C"; ""; "M"]
[]
2:
[""; ""; ""]
[""; null; ""; ""]
3:
...
Ok, passed 100 tests.
This does not necessarily mean your function is correct, there still could be a failing combination that FsCheck did not try or it could be wrong in a different way. But it is a pretty good indication that it is correct in terms of the concatenation property.
Testing for the concatenation property with FsCheck actually allowed us to call myFunc
300 times with different values and prove that it did not crash or returned an unexpected value.
FsCheck does not replace case by case testing, it complements it:
Notice that if you had run FsCheck.Verbose myFuncConcatenation
over the original function, which had a bug, it would still pass. The reason is the bug was independent of the concatenation property. This means that you should always have the case by case testing where you check the most important cases and you can complement that with FsCheck to test other situations.
Here are other properties you can check, these test the two false conditions independently:
let myFuncHasNulls l = if List.contains null l then myFunc l = false else true
let myFuncHasEmpty l = if List.contains "" l then myFunc l = false else true
Check.Quick myFuncHasNulls
Check.Quick myFuncHasEmpty
// Ok, passed 100 tests.
// Ok, passed 100 tests.