For single column, the input type of UDF is the dataType of this column, while for struct column, the input type is Row, why and how is it implemented?
import org.apache.spark.sql.types._
import org.apache.spark.sql.Row
val sub_schema = StructType(StructField("col1",ArrayType(IntegerType,false),true) :: StructField("col2",StringType,true)::Nil)
val schema = StructType(StructField("subtable", sub_schema,true) :: Nil)
val data = Seq(Row(Row(Array(1,2),"eb")), Row(Row(Array(3,2,1), "dsf")) )
val rd = sc.parallelize(data)
val df = spark.createDataFrame(rd, schema)
df.printSchema
val u = udf((x:Row) => x, sub_schema)
root
|-- subtable: struct (nullable = true)
| |-- col1: array (nullable = true)
| | |-- element: integer (containsNull = false)
| |-- col2: string (nullable = true)