First, we can improve the speed of log2, but that only gives us a fixed factor speed-up and doesn't change the scaling.
Faster log2 adapted from: https://graphics.stanford.edu/~seander/bithacks.html#IntegerLogLookup
The lookup table method takes only about 7 operations to find the log
of a 32-bit value. If extended for 64-bit quantities, it would take
roughly 9 operations. Another operation can be trimmed off by using
four tables, with the possible additions incorporated into each. Using
int table elements may be faster, depending on your architecture.
Second, we must re-think the algorithm. If you know that numbers between N and M have the same number of digits, would you add them up one by one or would you rather do (M-N+1)*numDigits?
But if we have a range where multiple numbers appear what do we do? Let's just find the intervals of same digits, and add sums of those intervals. Implemented below. I think that my findEndLimit
could be further optimized with a lookup table.
Code
#include <stdio.h>
#include <limits.h>
#include <time.h>
unsigned int fastLog2(unsigned int v)
{
static const char LogTable256[256] =
{
#define LT(n) n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n
-1, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
LT(4), LT(5), LT(5), LT(6), LT(6), LT(6), LT(6),
LT(7), LT(7), LT(7), LT(7), LT(7), LT(7), LT(7), LT(7)
};
register unsigned int t, tt; // temporaries
if (tt = v >> 16)
{
return (t = tt >> 8) ? 24 + LogTable256[t] : 16 + LogTable256[tt];
}
else
{
return (t = v >> 8) ? 8 + LogTable256[t] : LogTable256[v];
}
}
unsigned int numberOfBits(unsigned int i)
{
if (i == 0) {
return 1;
}
else {
return fastLog2(i) + 1;
}
}
unsigned int findEndLimit(unsigned int sx, unsigned int ex)
{
unsigned int sy = numberOfBits(sx);
unsigned int ey = numberOfBits(ex);
unsigned int mx;
unsigned int my;
if (sy == ey) // this also means sx == ex
return ex;
// assumes sy < ey
mx = (ex - sx) / 2 + sx; // will eq. sx for sx + 1 == ex
my = numberOfBits(mx);
while (ex - sx != 1) {
mx = (ex - sx) / 2 + sx; // will eq. sx for sx + 1 == ex
my = numberOfBits(mx);
if (my == ey) {
ex = mx;
ey = numberOfBits(ex);
}
else {
sx = mx;
sy = numberOfBits(sx);
}
}
return sx+1;
}
int main(void)
{
unsigned int a, b, m;
unsigned long l;
clock_t start, end;
l = 0;
a = 0;
b = UINT_MAX;
start = clock();
unsigned int i;
for (i = a; i < b; ++i) {
l += numberOfBits(i);
}
if (i == b) {
l += numberOfBits(i);
}
end = clock();
printf("Naive\n");
printf("Digits: %ld; Time: %fs\n",l, ((double)(end-start))/CLOCKS_PER_SEC);
l=0;
start = clock();
do {
m = findEndLimit(a, b);
l += (b-m + 1) * (unsigned long)numberOfBits(b);
b = m-1;
} while (b > a);
l += (b-a+1) * (unsigned long)numberOfBits(b);
end = clock();
printf("Binary search\n");
printf("Digits: %ld; Time: %fs\n",l, ((double)(end-start))/CLOCKS_PER_SEC);
}
Output
From 0 to UINT_MAX
$ ./main
Naive
Digits: 133143986178; Time: 25.722492s
Binary search
Digits: 133143986178; Time: 0.000025s
My findEndLimit can take long time in some edge cases:
From UINT_MAX/16+1 to UINT_MAX/8
$ ./main
Naive
Digits: 7784628224; Time: 1.651067s
Binary search
Digits: 7784628224; Time: 4.921520s