You seem to have a lot of small, disconnected components. If you want an informative graph, I think you should sort and group the connected components by size. Furthermore, the underlying assumption of many network layout algorithms is that there is a single giant component. Hence if you want sensible coordinates, you will often need to compute the layout for each component separately and then arrange the components with respect to each other. I would re-plot your graph in this way:

I have written the code for this graph using networkx
as that is my module of choice. However, it would be very easy to substitute the networkx
functions with igraph
functions. The two functions that you need to replace are networkx.connected_component_subgraphs
and whatever you want to use for the component_layout_func
.
#!/usr/bin/env python
import numpy as np
import matplotlib.pyplot as plt
import networkx
def layout_many_components(graph,
component_layout_func=networkx.layout.spring_layout,
pad_x=1., pad_y=1.):
"""
Arguments:
----------
graph: networkx.Graph object
The graph to plot.
component_layout_func: function (default networkx.layout.spring_layout)
Function used to layout individual components.
You can parameterize the layout function by partially evaluating the
function first. For example:
from functools import partial
my_layout_func = partial(networkx.layout.spring_layout, k=10.)
pos = layout_many_components(graph, my_layout_func)
pad_x, pad_y: float
Padding between subgraphs in the x and y dimension.
Returns:
--------
pos : dict node : (float x, float y)
The layout of the graph.
"""
components = _get_components_sorted_by_size(graph)
component_sizes = [len(component) for component in components]
bboxes = _get_component_bboxes(component_sizes, pad_x, pad_y)
pos = dict()
for component, bbox in zip(components, bboxes):
component_pos = _layout_component(component, bbox, component_layout_func)
pos.update(component_pos)
return pos
def _get_components_sorted_by_size(g):
subgraphs = list(networkx.connected_component_subgraphs(g))
return sorted(subgraphs, key=len)
def _get_component_bboxes(component_sizes, pad_x=1., pad_y=1.):
bboxes = []
x, y = (0, 0)
current_n = 1
for n in component_sizes:
width, height = _get_bbox_dimensions(n, power=0.8)
if not n == current_n: # create a "new line"
x = 0 # reset x
y += height + pad_y # shift y up
current_n = n
bbox = x, y, width, height
bboxes.append(bbox)
x += width + pad_x # shift x down the line
return bboxes
def _get_bbox_dimensions(n, power=0.5):
# return (np.sqrt(n), np.sqrt(n))
return (n**power, n**power)
def _layout_component(component, bbox, component_layout_func):
pos = component_layout_func(component)
rescaled_pos = _rescale_layout(pos, bbox)
return rescaled_pos
def _rescale_layout(pos, bbox):
min_x, min_y = np.min([v for v in pos.values()], axis=0)
max_x, max_y = np.max([v for v in pos.values()], axis=0)
if not min_x == max_x:
delta_x = max_x - min_x
else: # graph probably only has a single node
delta_x = 1.
if not min_y == max_y:
delta_y = max_y - min_y
else: # graph probably only has a single node
delta_y = 1.
new_min_x, new_min_y, new_delta_x, new_delta_y = bbox
new_pos = dict()
for node, (x, y) in pos.items():
new_x = (x - min_x) / delta_x * new_delta_x + new_min_x
new_y = (y - min_y) / delta_y * new_delta_y + new_min_y
new_pos[node] = (new_x, new_y)
return new_pos
def test():
from itertools import combinations
g = networkx.Graph()
# add 100 unconnected nodes
g.add_nodes_from(range(100))
# add 50 2-node components
g.add_edges_from([(ii, ii+1) for ii in range(100, 200, 2)])
# add 33 3-node components
for ii in range(200, 300, 3):
g.add_edges_from([(ii, ii+1), (ii, ii+2), (ii+1, ii+2)])
# add a couple of larger components
n = 300
for ii in np.random.randint(4, 30, size=10):
g.add_edges_from(combinations(range(n, n+ii), 2))
n += ii
pos = layout_many_components(g, component_layout_func=networkx.layout.circular_layout)
networkx.draw(g, pos, node_size=100)
plt.show()
if __name__ == '__main__':
test()
EDIT
If you want the subgraphs tightly arranged, you need to install rectangle-packer (pip install rectangle-packer
), and substitute _get_component_bboxes
with this version:
import rpack
def _get_component_bboxes(component_sizes, pad_x=1., pad_y=1.):
dimensions = [_get_bbox_dimensions(n, power=0.8) for n in component_sizes]
# rpack only works on integers; sizes should be in descending order
dimensions = [(int(width + pad_x), int(height + pad_y)) for (width, height) in dimensions[::-1]]
origins = rpack.pack(dimensions)
bboxes = [(x, y, width-pad_x, height-pad_y) for (x,y), (width, height) in zip(origins, dimensions)]
return bboxes[::-1]

Edit #2
I have written a library for visualising networks, which is called netgraph. It automatically handles networks with multiple components in the way outlined above. It is fully compatible with networkx and igraph Graph objects, so it should be easy and fast to make great looking graphs of graphs (at least that is the idea).

import itertools
import matplotlib.pyplot as plt
import networkx as nx
# installation easiest via pip:
# pip install netgraph
from netgraph import Graph
# construct the graph as before:
g = nx.Graph()
# add 30 unconnected nodes
g.add_nodes_from(range(30))
# add 15 2-node components
g.add_edges_from([(ii, ii+1) for ii in range(30, 60, 2)])
# add 10 3-node components
for ii in range(60, 90, 3):
g.add_edges_from([(ii, ii+1), (ii, ii+2), (ii+1, ii+2)])
# add a couple of larger components
n = 90
for ii in [10, 20, 40]:
g.add_edges_from(itertools.combinations(range(n, n+ii), 2))
n += ii
# if there are any disconnected components, netgraph automatically handles them separately
Graph(g, node_layout='circular', node_size=1, node_edge_width=0.1, edge_width=0.1, edge_color='black', edge_alpha=1.)
plt.show()