I have a training set with a response variable ViolentCrimesPerPop, and I purposely fit a large regression tree with control
control1 <- rpart.control(minsplit=2, cp=1e-8, xval=20)
train_control <- rpart(ViolentCrimesPerPop ~ ., data=train, method='anova', control=control1)
then i use it to predict the testing set
predict1 <- predict(train_control, newdata=test)
however I'm not sure how to compute the mean square error of the test set because it requires the response variable ViolentCrimesPerPop, which is not given in the test set. Can someone give me a hint on how to approach this problem?