I want to one hot encode my variables only for the top categories and NA and 'others'.
So in this simplified example, hot encoding b where freq > 1 and NA:
id <- c(1, 2, 3, 4, 5, 6)
b <- c(NA, "A", "C", "A", "B", "C")
c <- c(2, 3, 6, NA, 4, 7)
df <- data.frame(id, b, c)
id b c
1 1 <NA> 2
2 2 A 3
3 3 C 6
4 4 A NA
5 5 B 4
6 6 C 7
table <- as.data.frame(table(df$b))
Var1 Freq
1 A 2
2 B 1
3 C 2
table_top <- table[table$Freq > 1,]
Var1 Freq
1 A 2
3 C 2
Now, I would like to have something like this
id b_NA c b_A b_C b_Others
1 1 2 0 0 0
2 0 3 1 0 0
3 0 6 0 1 0
4 0 NA 1 0 0
5 0 4 0 0 1
6 0 7 0 1 0
I have tried with subsetting df
table_top <- as.vector(table_top$Var1)
table_only_top <- subset(df, b %in% table_top)
table_only_top
a b c
2 1 A 3
3 2 C 6
4 2 A NA
6 3 C 7
However, now I am stuck how to get to the output. In my real data I have many more categories than here, so using the names from the output is not an option. Also the others category in my real output exists of many categories.
Any hint is highly appreciated :)