1

I have multiindex DataFrame and a dictionary. I need to divide all numerical values in the DF by the number from the dictionary when the dictionary key corestponding with the 0 level index. Here is my code -- all I get is NaN values. Thanks for help.

import pandas as pd

data = {
    "ix0" : ["a", "a", "b", "b"], 
    "ix1" : ["a", "b", "a", "b"], 
    "col1" : [0, 1, 2, 3],
    "col2" : [3, 2, 1, 0]
}

dict = {
    "a" : 10,
    "b" : 100 
}

df = pd.DataFrame(data).set_index(["ix0", "ix1"])

print(df, "\n")

for letter in dict.keys():
    df.loc[letter] = df.loc[letter].divide(dict[letter])

print(df)

output:

         col1  col2
ix0 ix1            
a   a       0     3
    b       1     2
b   a       2     1
    b       3     0 

         col1  col2
ix0 ix1            
a   a     NaN   NaN
    b     NaN   NaN
b   a     NaN   NaN
    b     NaN   NaN
BoB
  • 129
  • 2
  • 9

1 Answers1

0

Dont use variable name dict, because python code word.

Loop by dictionary by .items() and for select in MultiIndex use slicers:

d = {
    "a" : 10,
    "b" : 100 
}

idx = pd.IndexSlice

for k, v in d.items():
    df.loc[idx[k, :], :] /=  v
    #same like
    #df.loc[idx[k, :], :] =  df.loc[idx[k, :], :] / v

print(df)
         col1  col2
ix0 ix1            
a   a    0.00  0.30
    b    0.10  0.20
b   a    0.02  0.01
    b    0.03  0.00
jezrael
  • 822,522
  • 95
  • 1,334
  • 1,252