I need to select some features from dataset for a regression task. But the numerical values are from different ranges.
from sklearn.datasets import load_boston
from sklearn.feature_selection import SelectKBest, f_regression
X, y = load_boston(return_X_y=True)
X_new = SelectKBest(f_regression, k=2).fit_transform(X, y)
To increase the performance of regression model do I need to normalize X before SelectKBest
method?