I am still teaching some R mainly to myself (and to my students).
Here's an implementation of the Collatz sequence in R:
f <- function(n)
{
# construct the entire Collatz path starting from n
if (n==1) return(1)
if (n %% 2 == 0) return(c(n, f(n/2)))
return(c(n, f(3*n + 1)))
}
Calling f(13) I get 13, 40, 20, 10, 5, 16, 8, 4, 2, 1
However note that a vector is growing dynamically in size here. Such moves tend to be a recipe for inefficient code. Is there a more efficient version?
In Python I would use
def collatz(n):
assert isinstance(n, int)
assert n >= 1
def __colla(n):
while n > 1:
yield n
if n % 2 == 0:
n = int(n / 2)
else:
n = int(3 * n + 1)
yield 1
return list([x for x in __colla(n)])
I found a way to write into vectors without specifying their dimension a priori. Therefore a solution could be
collatz <-function(n)
{
stopifnot(n >= 1)
# define a vector without specifying the length
x = c()
i = 1
while (n > 1)
{
x[i] = n
i = i + 1
n = ifelse(n %% 2, 3*n + 1, n/2)
}
x[i] = 1
# now "cut" the vector
dim(x) = c(i)
return(x)
}