3

I'm wondering how to make decoder in tensorflow rnn, feed it's i th output to (i+1)th input

my inputs have 20 sequence and 3680 dementions and my outputs have 39 sequence and 3680 dementions all data is 0~1 number

here is my model

with tf.variable_scope('encoder'):    
    enc_input = tf.placeholder(tf.float32,[None, input_sequence_length, input_dim])

    enc_cell = tf.contrib.rnn.BasicLSTMCell(num_units = input_sequence_length)

    _ , encoder_states = tf.nn.dynamic_rnn(enc_cell, enc_input ,  dtype=tf.float32)

with tf.variable_scope('decoder'):
    dec_input = tf.placeholder(tf.float32,[None, output_sequence_length, output_dim])
    dec_output = tf.placeholder(tf.float32,[None, output_sequence_length, output_dim])

    dec_cell = tf.contrib.rnn.BasicLSTMCell(num_units = output_sequence_length)

    outputs , _ = tf.nn.dynamic_rnn(dec_cell, dec_input,dtype = tf.float32,
                                    initial_state = encoder_states)

how can i make decoder model that feed previous outputs to next input?

P.S

I make my self-answer code like this

with tf.variable_scope('decoder'):
    dec_input = tf.placeholder(tf.float32,[None, 1, output_dim])
    dec_output = tf.placeholder(tf.float32,[None, output_sequence_length, output_dim])

    outputs = []
    state = encoder_states

    dec_cell = tf.contrib.rnn.BasicLSTMCell(num_units = dec_hidden_size)

    for i in range(output_sequence_length):
        if i==0:
            output , state = tf.nn.dynamic_rnn(dec_cell, dec_input, initial_state = state, dtype = tf.float32)
            outputs.append(output)
        else:
            output , state = tf.nn.dynamic_rnn(dec_cell, 
                                                 output, 
                                                 initial_state = state, 
                                                 dtype = tf.float32)
            outputs.append(output)

outputs = tf.reshape(outputs,[-1,output_dim])
outputs = tf.reshape(outputs,[-1,output_sequence_length,output_dim])

I think this code's output is different from upper code's output but I'm not sure it worked properly.

so still I wonder how to make decoder that has loop function((i)output->(i+1)input) with tensorflow method, because it takes more memory allocation than the upper code. (in my thought it has same cell count)

Bonic
  • 67
  • 5

0 Answers0