I am trying to solve the equation below using fminsearch
, but I think the objective function is wrong.
How should I write the objective function or modify any other part of the code? This is basically a fitting problem, where the optimization procedure should fit the equation to the given data.
% Consider the following data:
Data = ...
[0.0000 5.8955
0.1000 3.5639
0.2000 2.5173
0.3000 1.9790
0.4000 1.8990
0.5000 1.3938
0.6000 1.1359
0.7000 1.0096
0.8000 1.0343
0.9000 0.8435
1.0000 0.6856
1.1000 0.6100
1.2000 0.5392
1.3000 0.3946
1.4000 0.3903
1.5000 0.5474
1.6000 0.3459
1.7000 0.1370
1.8000 0.2211
1.9000 0.1704
2.0000 0.2636];
% Let's plot these data points.
t = Data(:,1);
y = Data(:,2);
plot(t,y,'ro')
title('Data points')
hold on
% fit the function: y = c(1)*exp(-lam(1)*t) + c(2)*exp(-lam(2)*t)
%
% define the parameters in terms of one variable x:
% x(1) = c(1)
% x(2) = lam(1)
% x(3) = c(2)
% x(4) = lam(2)
%
% Then define the curve as a function of the parameters x and the data t:
F = @(x,t)(x(1)*exp(-x(2)*t) + x(3)*exp(-x(4)*t));
% We arbitrarily set our initial point x0 as follows: c(1) = 1,
% lam(1) = 1, c(2) = 1, lam(2) = 0:
x0 = [1 1 1 0];
% We run the solver and plot the resulting fit
options = optimset('TolFun',1e-5,'TolX',1e-5,'MaxFunEvals',10,'MaxIter',4000,'Display','iter');
[x,fval,exitflag,output] = fminsearch(F,x0,options)
plot(t,F(x,t))
hold off