Question
How is the HashMap method putIfAbsent able to perform a put conditionally in a way thats faster than calling containsKey(x) prior?
For example, if you didn't use putIfAbsent you could use:
if(!map.containsKey(x)){
map.put(x,someValue);
}
I had previously thought putIfAbsent was convenience method for calling containsKey followed by a put on a HashMap. But after running a benchmark putIfAbsent is significantly faster than using containsKey followed by Put. I looked at the java.util source code to try and see how this is possible but it's a bit too cryptic for me to figure out. Does anyone know internally how putIfAbsent seems to work in a better time complexity? Thats my assumption based on running a few code tests in which my code ran 50% faster when using putIfAbsent. It seems to avoid calling a get() but how?
Example
if(!map.containsKey(x)){
map.put(x,someValue);
}
VS
map.putIfAbsent(x,somevalue)
Java Source Code for Hashmap.putIfAbsent
@Override
public V putIfAbsent(K key, V value) {
return putVal(hash(key), key, value, true, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}