I have a model that is trained in Keras with tensor flow backend. The weights are in .h5 format. I am interested in applying quantization feature part of tensorflow (https://www.tensorflow.org/api_docs/python/tf/quantization). So far, I have managed to convert the weights from .h5 format to tensor flow .pb format using the tool available online (https://github.com/amir-abdi/keras_to_tensorflow/). There are a couple of issues with this and the main concern is I don’t see a reduction in my model size post quantization. Also, I need to re-convert the .pb weights to .h5 format to test it with my infrastructure.
- Is there a known best method for performing tensorflow quantization within Keras?
- Is there an easy way to convert weights format from .pb to .h5?
Thanks