If I want to calculate the n-dimensional distance of two vectors, I can use a function such as:
a = c(1:10)
b = seq(20, 23, length.out = length(a))
test_fun =
function(x,y) {
return(
sqrt(
sum(
(x - y) ^ 2
)
)
)
}
n_distance = test_fun(a,b)
Now, I want to expand this to a matrix setting: I want to calculate the n-dimensional distance for each pair of rows of two matrices.
set.seed(123)
a_mtx = matrix(1:30, ncol = 5)
b_mtx = matrix(sample(1:15,15), ncol = 5)
n_distance_mtx =
matrix(
NA,
nrow = nrow(b_mtx),
ncol = nrow(a_mtx)
)
for(i in 1:nrow(b_mtx)) {
for(j in 1:nrow(a_mtx)) {
n_distance_mtx[i,j] =
test_fun(a_mtx[j,], b_mtx[i,])
}
}
Where each column of n_distance_mtx
contains the distance metrics between each row of a_mtx
and b_mtx
(so n_distance_mtx[,1]
is the distance between a_mtx[1,]
and b_mtx[1:3,]
.
If I calculate column means on n_distance_mtx
I can obtain the mean distance between each row in a_mtx
and all rows of b_mtx
.
colMeans(n_distance_mtx)
#[1] 23.79094 24.90281 26.15618 27.53303 29.01668 30.59220
So 23.79094 is the mean distance between a_mtx[1,]
and b_mtx[1:3,]
, and 24.90281 is the mean distance between a_mtx[2,]
and b_mtx[1:3,]
, and so on.
Question: How can I arrive at the same solution without using for-loops?
I want to apply this method to matrices with much larger dimension (on the order of hundreds of thousands of rows). Looking at this and this, it seems there must be a way to accomplish this with a Vectorize
d outer
function, but I have been unable to generate such a function.
test_fun_vec =
Vectorize(
function(x,y) {
outer(
x,
y,
test_fun
)
}
)
test_fun_vec(a_mtx,b_mtx)
#[1] 4 0 2 7 4 6 3 5 1 5 7 5 10 0 9 11 15 17 8 11 9 12 10 16
#[25] 10 22 20 25 15 24