So I am trying to read a large amount of relatively large netCDF files containing hydrologic data. The NetCDF files all look like this:
<xarray.Dataset>
Dimensions: (feature_id: 2729077, reference_time: 1, time: 1)
Coordinates:
* time (time) datetime64[ns] 1993-01-11T21:00:00
* reference_time (reference_time) datetime64[ns] 1993-01-01
* feature_id (feature_id) int32 101 179 181 183 185 843 845 847 849 ...
Data variables:
streamflow (feature_id) float64 dask.array<shape=(2729077,), chunksize=(50000,)>
q_lateral (feature_id) float64 dask.array<shape=(2729077,), chunksize=(50000,)>
velocity (feature_id) float64 dask.array<shape=(2729077,), chunksize=(50000,)>
qSfcLatRunoff (feature_id) float64 dask.array<shape=(2729077,), chunksize=(50000,)>
qBucket (feature_id) float64 dask.array<shape=(2729077,), chunksize=(50000,)>
qBtmVertRunoff (feature_id) float64 dask.array<shape=(2729077,), chunksize=(50000,)>
Attributes:
featureType: timeSeries
proj4: +proj=longlat +datum=NAD83 +no_defs
model_initialization_time: 1993-01-01_00:00:00
station_dimension: feature_id
model_output_valid_time: 1993-01-11_21:00:00
stream_order_output: 1
cdm_datatype: Station
esri_pe_string: GEOGCS[GCS_North_American_1983,DATUM[D_North_...
Conventions: CF-1.6
model_version: NWM 1.2
dev_OVRTSWCRT: 1
dev_NOAH_TIMESTEP: 3600
dev_channel_only: 0
dev_channelBucket_only: 0
dev: dev_ prefix indicates development/internal me...
I have 25 years worth of this data, and it is recorded hourly. So there is about 4 TB of data total.
Right now I am just trying to get seasonal averages (Daily and Monthly) of the streamflow values. So I created the following script.
import xarray as xr
import dask.array as da
from dask.distributed import Client
import os
workdir = '/path/to/directory/of/files'
files = [os.path.join(workdir, i) for i in os.listdir(workdir)]
client = Client(processes=False, threads_per_worker=4, n_workers=4, memory_limit='750MB')
big_array = []
for i, file in enumerate(files):
ds = xr.open_dataset(file, chunks={"feature_id": 50000})
if i == 0:
print(ds)
print(ds.streamflow)
big_array.append(ds.streamflow)
ds.close()
if i == 5:
break
dask_big_array = da.stack(big_array, axis=0)
print(dask_big_array)
The ds.streamflow object looks like this when printed, and from what I understand it is just a Dask array:
<xarray.DataArray 'streamflow' (feature_id: 2729077)>
dask.array<shape=(2729077,), dtype=float64, chunksize=(50000,)>
Coordinates:
* feature_id (feature_id) int32 101 179 181 183 185 843 845 847 849 851 ...
Attributes:
long_name: River Flow
units: m3 s-1
coordinates: latitude longitude
valid_range: [ 0 50000000]
The weird thing is that when I stack the arrays, they seem to lose the chunking that I applied to them earlier. When I print out the big_array object I get this:
dask.array<stack, shape=(6, 2729077), dtype=float64, chunksize=(1, 2729077)>
The problem I am running into is when I try to run this code I get this warning, and then I think the memory gets overloaded so I have to kill the process.
distributed.worker - WARNING - Memory use is high but worker has no data to store to disk...
So I guess I have a few questions:
- Why is the dask array losing the chunking when stacked?
- Is there a more efficient way to stack all of these arrays to parallelize this process?
From the comments, this is what big array
is:
[<xarray.DataArray 'streamflow' (feature_id: 2729077)>
dask.array<shape=(2729077,), dtype=float64, chunksize=(50000,)>
Coordinates:
* feature_id (feature_id) int32 101 179 181 183 185 843 845 847 849 851 ...
Attributes:
long_name: River Flow
units: m3 s-1
coordinates: latitude longitude
valid_range: [ 0 50000000], <xarray.DataArray 'streamflow' (feature_id: 2729077)>
dask.array<shape=(2729077,), dtype=float64, chunksize=(50000,)>
Coordinates:
* feature_id (feature_id) int32 101 179 181 183 185 843 845 847 849 851 ...
Attributes:
long_name: River Flow
units: m3 s-1
coordinates: latitude longitude
valid_range: [ 0 50000000], <xarray.DataArray 'streamflow' (feature_id: 2729077)>
dask.array<shape=(2729077,), dtype=float64, chunksize=(50000,)>
Coordinates:
* feature_id (feature_id) int32 101 179 181 183 185 843 845 847 849 851 ...
Attributes:
long_name: River Flow
units: m3 s-1
coordinates: latitude longitude
valid_range: [ 0 50000000], <xarray.DataArray 'streamflow' (feature_id: 2729077)>
dask.array<shape=(2729077,), dtype=float64, chunksize=(50000,)>
Coordinates:
* feature_id (feature_id) int32 101 179 181 183 185 843 845 847 849 851 ...
Attributes:
long_name: River Flow
units: m3 s-1
coordinates: latitude longitude
valid_range: [ 0 50000000], <xarray.DataArray 'streamflow' (feature_id: 2729077)>
dask.array<shape=(2729077,), dtype=float64, chunksize=(50000,)>
Coordinates:
* feature_id (feature_id) int32 101 179 181 183 185 843 845 847 849 851 ...
Attributes:
long_name: River Flow
units: m3 s-1
coordinates: latitude longitude
valid_range: [ 0 50000000], <xarray.DataArray 'streamflow' (feature_id: 2729077)>
dask.array<shape=(2729077,), dtype=float64, chunksize=(50000,)>
Coordinates:
* feature_id (feature_id) int32 101 179 181 183 185 843 845 847 849 851 ...
Attributes:
long_name: River Flow
units: m3 s-1
coordinates: latitude longitude
valid_range: [ 0 50000000]]