Consider the following:
using vector_type = std::vector<int>;
using const_iterator = typename vector_type::const_iterator;
using const_reverse_iterator = typename vector_type::const_reverse_iterator;
using iterator = typename vector_type::iterator;
using reverse_iterator = typename vector_type::reverse_iterator;
int main()
{
static_assert(!std::is_assignable_v<iterator, const_iterator>); // passes
static_assert(!std::is_assignable_v<reverse_iterator, const_reverse_iterator>); // fails
static_assert(std::is_assignable_v<reverse_iterator, const_reverse_iterator>); // passes
}
I can check that assignment of iterator{} = const_iterator{}
is not valid, but not an assignment of reverse_iterator{} = const_reverse_iterator{}
with this type trait.
This behavior is consistent across gcc 9.0.0, clang 8.0.0, and MSVC 19.00.23506
This is unfortunate, because the reality is that reverse_iterator{} = const_reverse_iterator{}
doesn't actually compile with any of the above-mentioned compilers.
How can I reliably check such an assignment is invalid?
This behavior of the type trait implies that the expression
std::declval<reverse_iterator>() = std::declval<const_reverse_iterator>()
is well formed according to [meta.unary.prop], and this appears consistent with my own attempts at an is_assignable
type trait.